Techno Labs Level 2

In this level we are going to concentrate more on building tips and creating our first interactive enviroment features, instead of a blow by blow account of every detail of work as we did in Techno Level 1. We will also be working on our jumping movement, looking at level changing, and start to organize our folder(s) and script to handle a much larger and expanding project.

Getting started:

First create a new folder in our FPS folder, call it TLlevel2 then copy the following files from the Tllevel1 levels folder:

1. cbabe.mdl our player model

2. level1.wdl our script

3. the ‘zoneblock’ .map and .wmb files

4. the image file for the carpet runner (mine was called carpet1.bmp)

Open and save a new blank level in that folder called TLlevel2. Add the standard.wad and set the default texture to NONE again.

Open TLlevel1 level. Use the select tool and grab all the elements of the Room 4 hallway including trim, carpet runner etc. Copy the selected. Reopen our new TLlevel2 and paste this at the level origin. While its all still selected, align it EXACTLY as was in Tllevel1 at the origin, the floors centered to the origin and the top of the floor block set on the X axis. Delete all the lights. Grab the end wall that closes off the top portion of our hallway, rotate it 180 degrees and move it down to plug the other end of the hallway. Move the ‘zoneblock’ right 64 quants down the hallway.

[image: image1.png]
Open the map properties and select the level1.wdl for this levels script. Edit the main function in our script to level_load (“TLlevel2.wmb”); then add the cbabe model at the origin point and assign it the player_move action.

Save and build.

We are ready to start building our level, but let us look at what we want in it first.

[image: image2.png]
Ick! Another ugly hand drawing by me (At least this time I numbered the rooms, 1 through 11.

Room 1: is pretty much taken care of (its our hallway we just copied from the previous level) except for lighting. Why did we delete the lights? Build time. We also have ‘zoneblock’ here again. We are going to set our level change up so we can walk back and forth between TLlevel1 and TLlevel2.

Room 2: Short extension of our hallway that ends with 3 doors, 2 of which goes to office rooms, the 3rd an elevator shaft. We will carry over the look of Room1 to Room 2. Textures and trim, plus we will need to extend our runner carpet with an additional sprite.

Rooms 3 and 4: Offices for the administrators of Techno Labs. These offices should also make an impression on warm comfortable looks. Wood, carpeting, big desks with bookshelves, comfy chairs, soft lighting. Just think of an office a company CEO or a big time lawyer might have. Both of these rooms will also have hinged doors that the player is able open/close.

Room 5: Elevator shaft with elevator. This elevator will have sliding doors to close the shaft at top and bottom when the elevator car isn’t at either location. Elevator needs a panel to ‘call’ the elevator if someone on one floor needs the elevator car that may be on the other floor. Look is more utilitarian of metals and well lighted.

Room 6: hallway of upper part of this level comes off the elevator shaft. This hallway is meant to make an impression on visitors. Allowing them to look into the break room, laboratories and warehouse through windows. Almost half the wall space (vertically) is all windows, so visitors can see the scientists working but not disturb them. Hallway will have an arched ceiling, bright colors, very well lighted, tiled floor (mabey with a carpet or rubber mat runner)?

Room 7: employee break room with bathrooms. Workers have to take a break and use the restroom, have a coffee or soda. Cabinets, vending machines, coffee machine, chairs/tables, male/female restrooms. Bright walls, ceilings, tiled floors. Hinged door provides access to room

Rooms 8 and 9: laboratories. Very sterile looking rooms. Lots of Whites and off whites with black trims. Workbenches, large work table areas, all sorts of devices, pieces and parts, half completed projects on stands or work tables with lots of manuals, books, documents. Computer stations and large computer banks.

Bright lights, very minimal shadowing. Sliding doors provide access

Room 10: Warehouse/storage. Impressive 3 story room with grate like walkway around the middle level. Top story has a grate like floor, large lift runs between floor and 3rd story. Stairs run between the 3 stories.

Bright (almost white) metallic walls, darker floors, dark metallic trims with warning trims around lift areas and loading/unloading dock door (dummy dock door not a real exit for game purposes). Large piloted driod sits in this area to move crates. Crates of various sizes and colors piled up on 1st story reaching 2nd story height and some more piled up in 3rd story.

Room 11: another elevator shaft like room 5 that goes up to the Techno Labs level 3. Level transition is handled by this elevator.

Neat, but can we do all this? Of course we can!

In this (and remaining) levels I will focus on key points and tips vs. step by step, room by room as in level1. Since we have now to start building Rooms 2,3 and 4 we first need to talk about doors, before we lay anything down.

Hinged Door:

You will run into 2 general types of doors, doors that rotate and doors that slide. Rotating doors do just that, they rotate around an axis point (rotate to the left, to the right, rotate about its center, rotates up, rotates down, rotates clockwise/counterclockwise) while doors that slide, slide in a particular direction (up, down, left, right, diagonally, inwards or outwards from the player).

It is important to know a few things about each door in your level before laying down any geometry near each door.

1. How does it move and in what direction

2. How big is the player/enemy entities collision hull that have to fit though that door

3. How thick is that door

4. How is it to be opened? Player interaction? Switch? Opens automatically when an entity gets near it?

5. Is it to be lockable? If so how do you unlock it?

6. Can it be destroyed/knocked down?

7. Is another entity dependant on the state of the door (open/closed)?

Lets cover the first 3 in one fell swoop:

A door needs an opening that is wider than the: collision hull height and width of the largest entity to pass through it PLUS the thickness of the intended door frame (6 quants minimum). A good rule of thumb is make the door opening like we did our stairs in level1 at least twice the width of the entity and height at least ¼ more of the original height of the entity.

So with cbabe as our largest entity to pass through the doors here: She is aprox 32 quants wide and 66 quants tall IN our level (be sure you go by how big she is in WED as she is our model by which we scale our level)

[image: image3.png]
So our door opening should be aprox at least 64 quants wide and 83 quants tall, we will make it 88 quants tall to make it even with the snap grid.

Door thickness should be at least 3 quants, preferably 4 for minimum. If you want thicker that’s fine. Doorway opening for thickness should be at least wide enough for the door, more if you want to add any trim or recessing to the door.

We will build the door to room 4 first. This we want some trim around the door frame on the Room2 hallway side (we will use the same trim we used around the walls in Room1 to trim the door here which is 2X4 quants in size), inside the door can rest flush with the wall of the room. So we build an opening that is 64 quants wide (Y axis), 88 quants tall (Z axis) and 4quants thick for door + 4 quants for the trim = 8 so we will make it 8 quants thick at least.. Our walls are already 8 quants thick so that will solve that problem. We will need to redo our hallway wall through, we don’t want to texture non viewed surfaces, so we need to break up our wall into a few blocks.

[image: image4.png]
Go ahead build a similar opening on the other hallway wall. Leave the elevator shaft alone for now. Do the rooms 3 and 4 walls and ceilings too, as well as place trim, duplicated from room 1 and texture the hall and rooms and dup. a light fixture from room 1 to put down the rest of our hallway. To make mine go faster, I just made all of room 4 and that hallway wall then duplicated it for the other side.

Save. Build and run, be sure you can walk through the doorways with no problems or hang-ups. If you hang up on a doorway, then it’s too small. Go back and resize it a bit bigger. Mine I added another 8 quants wide to them.

[image: image5.png]
Running this gives us a good example of the “looking into infinite space” problem. Beyond our walls the level space is ‘infinite’ when a textured surface rendered and beyond it is infinite space and we see it in our view, the texture ‘smears’ across that infinite area. This can happen anywhere you have a gap between blocks. Even if you cannot see it, the engine can. Use that snap, that is what it is for to keep them blocks together.

Now, let’s build us a door. These 2 doors rotate on a hinge, its important we get the hinge rotation point right. Look at your own doors in your home/apartment. The hinges are on the inside edge in the direction the door swings. Standard construction practices today for doors is when facing a door from the ‘outside’ (of building or room), door knob is on your right, door hinged on your left and swings away from you to the left. Doors are usually positioned in a location where when opened, the door stops near the surface of a wall. Inside of a door is just the opposite, knob on your left, hinges are on your right along the door edge facing you. Pull the door towards you as it swings to your right. Doors that don’t follow this are usually either built before 1950’s or because of design of an opening wouldn’t allow a conventional door to work (such as the above mentioned open door to stop/rest against a wall.)

[image: image6.png]
1. This is what we want for a hinge point, the corner edge in the inside direction the door will swing. The door then won’t sink into any surface.

2. If hinge in the middle of the surface the door will sink half ways into the door frame

3. If hinged on the edge away from the swing direction the door will bury itself into the door frame

We first make a block to fill the space for our door. Once you’re sure it fits EXACTLY the spot for the door itself. Cut that block, save your level then open a new level. Paste that block into our new level and save it as ‘officedoor’.

[image: image7.png]
In this new level we want to align the doors hinge point Exactly on the Z axis of the levels origin point. Remember to rotate our cbabe entity we rotated her around the Z axis using PAN angle? We will be doing the same with our door. All angles rotate based on the axis at the origin. We also want to align our door to the X axis.

[image: image8.png]
Now you can build onto our door, like metal banding for a mid-evil wood door, handle/knob, an opening in it for a glass panel. If you intend on such details on your door, keep them in mind AHEAD of time when planning out your door opening and trim/frame placement. Example If I put metal banding on this door on both sides it would make my door an extra 4 quants thick (2 quants thick for trim each side). Also texture your door piece(s). This door I will make a knob out of 2 small cylinders an offset it so it won’t be in the way of my door trim. Texture I think the darker wood will work nice with the yellowplain for the doorknob (looks sort of like brass then). I temporarily bring in the cbabe model to get the knob to about the right height.

Save then build as a map entity. Reopen the TLlevel2 add the map entity ‘officedoor’ and move it into position. Duplicate this door and rotate it to fit the other office door opening. When you rotate this door you will see it rotate on its hinge point. Move this duplicate into the opening for the other office.

Save build (as a level, don’t forget to reset that button) and run your level.

[image: image9.png]
Sliding Door:

Sliding doors do just that, they slide in a particular direction. Because walls are solid, a sliding door needs a recessed area inside a wall to move into. We know the min size we need for a door for our cbabe model, but lets make the elevator door a bit bigger just so wee can see visually this door isn’t the same as the office doors. We will keep with a 4 quant thick and for the overall door way it has to be door thickness +6 quants minimum (3 quants for each wall to create an enclosed area for the door to slide into). I went with 16 quants thick, so I can rely inset the door into the frame (8 quant inset, 4 quant door, 4 quant backwall/elevator shaft wall) door ill be 80 quants wide and 98 tall. Bottom of door will be flush with floor surface. This will leave us a nice sized border around the elevator doorway to place a control panel/switch

[image: image10.png]
This recessed area should be the same size as the door. Since many surfaces of this doorframe won’t be visible, we need to break it down to smaller blocks like we did with our walls for the hallway around the door opening. (in picture the top blocks of the frame had been removed)

[image: image11.png]
This picture I textured each door frame block different and pulled the top off a scaled up copy of the frame so you can see how I broke it down. (NOTE: don’t forget to texture the INSIDE surfaces of the recess door area)

[image: image12.png]
Build the door as a map entity and placed it in the level.

[image: image13.png]
Continued on and built the bottom of the elevator shaft, leaving an 8 quant recess in the bottom to fit the elevator pad in, so when the elevator at the bottom its floor is flush with the hallway floor.

We won’t worry about how high to make the shaft yet

Not bad. Now we move on to the fun part (Creating a script for our doors.

How do we want these doors to open? Automatically as the player gets near them (like Star Trek doors), player hits a switch, player hits a key when close enough?

Let’s go with that 3rd one, player hits a key when within a minimum range from the door. That’s very common in FPS games.

Scripting our doors:

To script our doors to open and close, we have to first cover how the instruction, scan_entity works.

Scan_Entity

In some ways, scan_entity works a bit like trace. It draws a line out from one point to another and checks to see if it encounters anything, the difference being between scan and trace is the possible coverage area.

[image: image14.png]
Look at the differences above. While trace can search along a line a pixel width or the size/area of the models bounding box from 1 vector location to another defined vector location, scan can search an area in a cone shape up to entirely around itself (a sphere) based on setting a pan/tilt angle ranges and a distance range out from a starting vector location.

Scan also works for detecting ONLY entities. It won’t detect block surfaces, where trace will detect block surfaces. A scan also takes more time to do then a trace, especially when the scan area and distance are large.

Running multiple scans in a level at once, continuously through the entire running of a level is not advisable. It can have serious impact on the frame rate of your game with allot of continual scans running. If you must run something constantly scanning, keep its scan area small as possible. Limit the number of continual scans to a very minimum (like 2 or 3) and find alternate ways where something that needs to do a scan won’t do so until something else triggers it to do a scan, then turns off its scanning again.

Lets look at how we use scan_entity. scan_entity (var[5] from, vector width);

It has 2 parameters, the first being an array with 5 elements, in this order:

· X - starting X location

· Y - starting Y location

· Z - starting Z location

· PAN - the PAN angle direction of the scan

· TILT – the TILT angle direction of the scan

This array gives us then our starting location vector and the direction angles for which way the scan will go. If this scan originates from an entity (such as player) then the entity.x value can be used for this first parameter. You might say “but entity.x only holds 3 parameters, the X/Y/Z of that entity.”. Actually, an entities data is stored in a BIG array (plus some other data structures). Its X Y and Z elements are directly followed by its PAN TILT and ROLL values. So by giving the player.x as the scan_entitys first parameter it would read the players X/Y/Z and PAN/TILT.

The second parameter is a vector that needs the following data:

· PAN – this is the amount of arc in PAN angle for the scan area. I.e 90 would be 45 degrees to either side of the PAN direction of the first parameter. 360 would give a full circular scan around the scan point

· TILT – this, like the PAN above is the TILT arc range of the scan area. Value of 90 would give a 45 arc above and below the TILT direction set in the first parameter. 360 would give a full circular range around the center of the scan point

· Z – the distance, in quants, out from the XYZ start location in the direction of the PAN/TILT of the first parameter

Lets give 2 examples:

Temp.PAN = 90;

Temp.TILT = 90;

Temp.Z = 300;

Scan_entity (player.x,temp);

This example, the scan would start at the players X/Y/Z scan out in the direction of the players pan and tilt to a distance of 300 quants. It would then scan at that distance +- 45 degrees from the player.PAN angle and +-45 degrees from the player.TILT angle. (It would look like the cone shape in the picture above.)

Temp.PAN = 360;

Temp.TILT = 360;

Temp.Z = 600;

Scan_entity (camera.x,temp);

This example, the scan is centered on the camera location, will scan out at the camera PAN/TILT angle to a distance of 600 quants, then scan in a full 360 arc around the player PAN and TILT directions, creating a scan sphere. (as the other scan example in the picture above, but the sphere would be round, not block as is in the picture)

(more on scan later)

That’s cool, but how can we use that for our door? For that, we need to talk about entity events.

Entity Events:

An entity event is an action taken when something interacts with an entity. We had the briefest of hits at this when we talked about ent_move and move_mode for collision detection. An entity can be made sensible to certain game events, like collisions, being shot at, being hit with a scan or trace or a mouse pointer touches or clicks on it. When one of these interaction sensitivities is triggered, it calls a separate function designated as an entity event function to respond or how to handle that trigger.

First, there are several event sensitive triggers that an entity can have set and basically what they are for:

· Event_block – when the entity collides into a level block when moving with by the ent_move or c_move instructions

· Event_entity – when the entity collides with another entity when moving by the ent_move or c_move instructions

· Event_friction – when an entity using the physics engine(commercial and pro editions) collides with another entity it can then track that entity, the point of impact and the angle of the surface impacted relative to the entity

· Event_impact – entity is hit BY another entity that moved using the ent_move/c_move instructions

· Event_stuck – when the entity gets stuck in level geometry

· Event_push – when the entity is ran over by an entity with a higher PUSH value

· Event_click – entity is clicked on by the left mouse button

· Event_rightclick – entity is clicked on with the right mouse button

· Event_touch – mouse pointer touches the entity

· Event_release – mouse pointer is moved off of the entity (no longer touching)

· Event_scan – entity was hit by a scan_entity

· Event_detect – entity performed a scan_entity and detected an entity within the scan area that had it’s ENABLE_SCAN flag set.

· Event_trigger – when the entity detects another entity that moves with the ent_move/c_move within a defined TRIGGER_RANGE radius

· Event_shoot – the entity was hit by a trace that had a trace_mode = activate_shoot

· Event_sonar – the entity was hit by a trace that had a trace_mode = activae_sonar

· Event_disconnect – the entities player has been disconnected from a multiplayer game (comm. pro versions)

· Event_receive – when entity recieves a skill by send_skill (multiplayer comm, pro versions)

Wow, allot of them. Key point is for most of them they are either when an entity gets hit by something or hits something itself.

Lets focus on the one we need for the doors for now, we will cover more of them as we go along. You should have guessed we need the event_scan. When the player presses a key, the key will trigger the entity_scan originating from the player. If the scan hits a door entity, the event_scan will trigger the door to execute its event function.

So we need a scan for our player that only happens when the player hits a key, for most FPS games you have probably played that key is usually the space bar.

function operate() // scan nearby doors or switches for operating them

{

}

we don’t need a wait(1) instruction in this function because we just want to do ONE scan for one press of our key.

Scan needs a start location and pan/tilt direction. For a first person shooter what better one to use then the camera, the very direction the player faces.

Entity_scan (camera.x,)

Now we need an area coverage and a distance. We don’t want it to big so it won’t trigger 2 or more doors that might be near each other. Nor do we want the scan distance so far away. We want it to seem like the player walked up to the door and actually physically touched the knob and pushed the door, or touched a control panel to activate the door. The scan area should be within the view area so the player has to face what he/she is opening. Using the temp vector we can set our area and range:

Temp.PAN = 120; // 120 degree arc in front of the player

Temp.TILT = 120; // 120 degree arc above/below the player

Temp.Z = 150; //scan maximum range of 150 quants ahead of the player

Entity_scan(camera.x, temp);

Place that in the function

function operate() // scan nearby doors or switches for operating them

{

Temp.PAN = 120; // 120 degree arc in front of the player

Temp.TILT = 120; // 120 degree arc above/below the player
Temp.Z = 150; //scan maximum range of 150 quants ahead of the player

Entity_scan(camera.x, temp);

}

Now we need a key press for our player to activate it. Instead of using an if (key_) inside the players while loop we can assign an instruction called ON_key =. ON_key = allows us to assign a function to a key press, so that ANY time that key is pressed that function is called. Since out key is to be the spacebar it will look like:

ON_SPACE = operate; // pressing the spacebar will call the operate function making it execute
Notice we didn’t do = operate(); we didn’t use the parameter () above. By using the () the instruction takes on a totally different meaning.

We now place our operate function in the script any place before the main function and then insert the ON_SPACE = line to the very last line in our main function

function operate() // scan nearby doors or switches for operating them

{

temp.pan = 120;

temp.tilt = 120;

temp.z = 150;

scan_entity (camera.x, temp);

}

function main()

{

freeze_mode = 1;

level_load ("TLlevel2.wmb");

wait(2);

freeze_mode = 0;

on_space = operate;

}

Door actions

Our doors need a scripted action as well, to tell them what to do, just like our player entity. For now we are not going to go for the goal of building a generic sort of script action to handle any and all doors. Why? It gives us the chance to learn the mechanics to make a door operate, focusing on one or 2 types of doors. It also allows us a good opportunity to see how we can take an existing working script and modify it later on so it can handle more than just one or 2 specific items. (i.e. building on a simple script to make our OWN generic working script)

Action rotating_door

{

}

We need to make it sensitive to being hit by a scan.

my.event_scan = ON; // turns on sensitivity to scans that hit it

and we need it to call an even function if that event is triggered.

My.event = scan_event; //notice, we are going to call a function called scan_event but we passed no parameters, just like the ON_ instruction. Same deal applies with this instruction as the ON_ instruction.

No using the () in the call.

Function scan_event () // called by a door that is hit with a scan instruction
{

}

Action rotating_door

{

my.event_scan = ON; // turns on sensitivity to scans that hit it

my.event = scan_event;

}

Scope and Instance:

Before we proceed, this is an ideal time and situation to talk about 2 things: Scope and instance. These can confuse anyone trying to learn any form of C-Script, C language or C++ (or ANY higher level programming language) so I’ll try to make it simple as possible

Scope is a term that refers to how something exists in relationship to everything else. Example, this tutorial won’t be covering how to work with multiplayer games, so it can be said that multiplayer games is not within the scope of this tutorial. Car tires: You could goto a tire store, these tires are available to anyone (for a price) their scope would be called GLOBAL, in relationship to the world they are available to everyone. Now you got 5 tires for your car (4 on the car 1 spare). You own them, they belong to you. Their scope would be called LOCAL. They belong/exist only in relationship to you and your car. So Bob, your neighbor cannot use your tires if he has a flat, he needs to got the tire store and buy one, or ask YOU directly to barrow one.

As you know there are variables, vectors, arrays, strings, pointers and other such elements of a programming. These all have scope to their use, GLOBAL and LOCAL. An element defined outside a function or action is defined as a global element where an element defined inside a function or action is locally defined i.e.:

Var big_balloons; // global
Function ballons()

{

 var big_ballons; // local

}

Local definitions take precedence over global definitions, as in the example above any other function using the big_ballons variable would use the global one, but within the scope of the function ballons() the local variable will always be used.

ME and MY pointers: these are predefined pointers to entities that are assigned an action script. ME and MY are the same thing. In an action that calls a function(s) the me/my carries over to the function that is called.

Function do_something()

{

 my.X +=1;

}

action billy_bob

{

 do_something();

}

Giving the action billy_bob to an entity, the me/my pointers would refer to THAT entity in the Scope of that entity. So its action would call the do_something function, the MY. Would refer to the entity.

If I now had 2 entities (entity1 and entity2) and gave them both the action billy_bob, me/my would refer to entity1 in the SCOPE of entity1 and me/my would refer to entity2 in the SCOPE of entity2. Both entities actions would call the do_something function, which would it effect? Both of them.

Entity1 would call the do_something function, it would then create an INSTANCE (or sort of a copy) of the do_something function and it’s operation set to be within the scope of entity1. Our entity2 would also make the same do_something call and make an INSTANCE of the do_something function that that copy or instance falls under the scope of the entity2. In fact, our action billy_bob has 2 instances, 1 for each entity we assigned it to. Script objects such as functions and actions do NOTHING until an instance of it is created (i.e. it is called). Assigning an action to an entity creates an instance of that action.

So if I had 10 entities, all assigned the SAME action script, there would be 10 instances of that action running in our game.

Example: we got Billy bob and Billy ray (the Billy brothers) 2 separate instances of the Billy brothers. We tell them to go down and buy a case of beer, so Billy bob and Billy ray each get in their own pickup trucks and go down and buy a case of beer (they carried out the same function but in their own instances(pickups trucks) of the function). They get home and turn on the TV to watch football, Billy joe comes in (another Billy brother instance) and asks whos cases of beer are those. Billy bob says “this is MY beer case” and Billy ray says “ this is MY beer case” (my refers to the scope Billy bob or Billy ray). Billy joe, being a Billy brother, also has the same action but his own instance, which started AFTER Billy bob and Billy rays instances started, now goes out to buy his OWN case of beer.

Kind of corny, but a simple way to show instance and scope.

 Back to our script for an additional reference of scope and instance:

Function scan_event () // called by a door that is hit with a scan instruction
{

}

Action rotating_door

{

my.event_scan = ON; // turns on sensitivity to scans that hit it

my.event = scan_event;

}

in our door action then we use my.event and in our level we have 2 rotating hinged doors which each will be assigned this same action, thus when the level runs there will be 2 instances of the rotating_door action running as our level runs. The MY pointer then refers to the particular door entity that that instance of the action is assigned to:

Door1

Door2

My/Me

My/Me

Action instance
Action instance

Each action instance can also call on the event function scan_event if the individual entity is scanned, creating an instance of the scan_event function that falls within the scope of THAT scanned entity.

If door 1 is scanned but not Door 2

Door1

Door2

My/Me

My/Me

Action instance

Action instance

|

Scan_event instance

Door 2 is scanned but not Door 1

Door1

Door2

My/Me

My/Me

Action instance

Action instance

|

Scan_event instance

Door 1 and 2 are both scanned

Door1

Door2

My/Me

My/Me

Action instance

Action instance

|

|

Scan_event instance

Scan_event instance

If door 1 and door2 are NEVER scanned, then scan_event function never gets called thus it NEVER gets runs through our game.

REMEMBER: everytime you make a function call it makes a NEW instance of that function, it does not go and reuse a previous instance, even if there is already an instance running.

Action instance

|

Scan_event instance

Here our action would call on the scan_event function, the function would run, reach its end of execution then removed from existence.

If we had this for code:

Function scan_event () // called by a door that is hit with a scan instruction
{

while(1)

{

wait(1);

}

}

Action rotating_door

{

my.event_scan = ON; // turns on sensitivity to scans that hit it

my.event = scan_event;

}

every time the scan_event was called it would make a new instance but our scan_event has a loop that keeps running.

Scanned once:

Action instance

 |

 Scan_event instance

Scanned a second time:

Action instance ----------

 | |

 Scan_event instance Scan_event instance

Scanned a third time:

Action instance --------------------------------------

 | | |

 Scan_event instance Scan_event instance Scan_event instance

…and so on repeating this cycle….

Each instance is running separately.

Important to keep that in your head how scope and instance works when writing our script.

One last subject to talk about before we get our doors working

Entity Elements

We understand about Me/My now and we know entities have a my.X, my.Y, my.Z, my.PAN, my.TILT parameter elements to them, but entities have many other parameter elements as well that we can take advantage of. One of these we are going to use now is called ‘Skills’. An entities skills is nothing more than a variable array of 100 elements (if you are using A5 you only have 40 skills)(like: var Skills[100]) but each element of that array has its own name’Skill’, ranging from Skill1 to Skill100. So you would reference it like this; my.Skill1 , my.Skill25, or my.Skill100. As with any other variable, its value range is +-999999.999 in value. We can use multiple skills in a row like we do with a vector:

We know:

Vec_set(camera.x,player.x);

Would mean copy the player.x, player.y and player.z values over to camera.x, camera.y and camera.z

So If I did this:

Vec_set(camera.x,player.skill1);

It would take the values of player.skill1, player.skill2 and player.skill3 and copy them to camera.x, camera.y and camera.z

We can make great use of these entity skills instead of creating allot of extra variables and vectors.

Back to creating our door script.

Function scan_event () // called by a door that is hit with a scan instruction
{

}

Action rotating_door

{

my.event_scan = ON; // turns on sensitivity to scans that hit it

my.event = scan_event;

}

Door action steps:

Door is opened or closed

Player presses space key to activate the door scan_event

Door ignores any other scan until it finishes moving

Door determines if it is open or closed and rotates in the direction it needs to move

Door reaches its end point range of movement

Changes its open/closed flag as applies to its new state.

Now will react to a scan_event again

We need a way to tell if the door is open or closed: lets use a skill as a flag for it.

my.skill1 = 1; //-1 = open, 1 = closed
We start it flagged as closed because that’s how we placed them in our level.

We also need to know the what the doors starting PAN angle is and keep that stored as our angle for being closed.

My.skill2 = my.pan; // the PAN angle for the closed position of the door
We need to know if the door is currently moving

My.skill3 = 0; // 0 = door not moving, 1 = door is moving

Finally we need to know how much of an angle off the original closed pan angle the door is

My.skill4 = 0; // current angle offset the door is while it is moving
Action rotating_door

{

my.skill1 = 1; //-1 = open, 1 = closed

my.skill2 = my.pan; // the PAN angle for the closed position of the door

my.skill3 = 0; // 0 = door not moving, 1 = door is moving

my.skill4 = 0; // current angle offset the door is while it is moving

my.event_scan = ON; // turns on sensitivity to scans that hit it

my.event = scan_event;

}

loop for our action that continues to run while the door still exists in the game

while (me != NULL)

{

wait(1);

}

loop to check if our door is moving or not

while (me != NULL)

{

while (my.skill3) // while the door is moving skill3 ==1 then run this loop

{

wait(1);

}

wait(1);

}

calculate the doors current pan angle (the starting pan + the angle offset for moving the door)

my.pan = my.skill2 + my.skill4;

calculate a new offset angle for the door at a speed rate of 2* time (adjust the 2 for faster or slower door)

this is done buy looking at the door state (open = -1 or closed = +1)

my.skill4 += my.skill1*2*time;

if the door is closed (skill1 = 1) then we are Adding 1*2*time to the angle offset (skill4). PAN rotation in a positive direction is counterclockwise direction or looking at a modern door, rotating to our left.

[image: image15.png]
if then my.skill1 = -1 (the door is open) then it would be my.skill4 += -1*2*time or reducing the pan angle in a clockwise direction

[image: image16.png]
we plug these 2 lines in just before our wait(1)

while (me != NULL)

{

while (my.skill3) // while the door is moving skill3 ==1 then run this loop

{

my.pan = my.skill2 + my.skill4;

my.skill4 += my.skill1*2*time;

wait(1);

}

wait(1);

}

Now what we need is a way to check if the door has reached its open or closed position and tell itself to stop moving. For now, we are going to set an closed/open range of 0 - 90 degrees for our door.

If (my.skill4 >= 90) // if the door is in the max open position or beyond
{

}

else // the door is not in the max open position
{

if (my.skill4 <= 0) // if the door is at the closed position or less

{

}

}

Now we just need to make sure that its final PAN angle is at the proper open/closed angle incase it moved a bit beyond it during the move. Then set the open/closed flag to reflect if the door is now opened or closed and then set the flag to say the door is done moving.

If (my.skill4 >= 90) // if the door is in the max open position or beyond
{

my.skill4 = 90; // door is set to the proper open angle

my.skill1 = -1; // door is now set to being opened

my.skill3 = 0; // door is no longer moving
}

else // the door is not in the max open position
{

if (my.skill4 <= 0) // if the door is at the closed position or less

{

my.skill4 = 0; // door is set to the proper closed angle

my.skill1 = 1; // door is now set to being closed

my.skill3 = 0; // door is no longer moving

}

}

plug this into our door is moving loop right before updating the pan angle lines:

while (me != NULL)

{

while (my.skill3) // while the door is moving skill3 ==1 then run this loop

{

If (my.skill4 >= 90) // if the door is in the max open position or beyond
{

my.skill4 = 90; // door is set to the proper open angle

my.skill1 = -1; // door is now set to being opened

my.skill3 = 0; // door is no longer moving
}

else // the door is not in the max open position
{

if (my.skill4 <= 0) // if the door is at the closed position or less

{

my.skill4 = 0; // door is set to the proper closed angle

my.skill1 = 1; // door is now set to being closed

my.skill3 = 0; // door is no longer moving

}

}

my.pan = my.skill2 + my.skill4;

my.skill4 += my.skill1*2*time;

wait(1);

}

wait(1);

}

Now just take this and put it into our door action right after the my.event = line

Action rotating_door

{

my.skill1 = 1; //-1 = open, 1 = closed

my.skill2 = my.pan; // the PAN angle for the closed position of the door

my.skill3 = 0; // 0 = door not moving, 1 = door is moving

my.skill4 = 0; // current angle offset the door is while it is moving

my.event_scan = ON; // turns on sensitivity to scans that hit it

my.event = scan_event;

while (me != NULL)

{

while (my.skill3) // while the door is moving skill3 ==1 then run this loop

{

If (my.skill4 >= 90) // if the door is in the max open position or beyond
{

my.skill4 = 90; // door is set to the proper open angle

my.skill1 = -1; // door is now set to being opened

my.skill3 = 0; // door is no longer moving
}

else // the door is not in the max open position
{

if (my.skill4 <= 0) // if the door is at the closed position or less

{

my.skill4 = 0; // door is set to the proper closed angle

my.skill1 = 1; // door is now set to being closed

my.skill3 = 0; // door is no longer moving

}

}

my.pan = my.skill2 + my.skill4;

my.skill4 += my.skill1*2*time;

wait(1);

}

wait(1);

}

}

Almost done, we now just need to trigger our door to actually move. At start its set to not moving (my.skill3 = 0)

We can use our scan_event to switch this flag:

function scan_event

{

if (EVENT_TYPE == event_scan) // we make SURE that it was a scan that triggered this function

{

my.skill3 = 1; // sets door movement flag to the move state

}

}

When an entity event is triggered, it stores into a predefined value called EVENT_TYPE what type of event triggered the my.event. If we have an action for an entity that is sensitive to several type of events, we need a way to tell which particular event did the triggering because we are only allowed to assign ONE event function to an entity. Even though we know we set the door action so its event is triggered only by a scan, we want to be sure that is what was the trigger. Plus it’s a good habit to get into to do that EVENT_TYPE check in the event function.

Save your script. Assign the rotate_door action to both of your hinged office doors. Save the level, build and run

You should now be able to walk up to a door, face it, press spacebar and the door will open, pressing the spacebar while its moving will do nothing. Once its open you can hit space bar again and the door will close. If the door moves a bit slow for you, adjust the speed rate. If it seems you have to get too close to open the door, adjust the Z distance in the scan. What if I wanted my door to hinge on the other side of the door frame or open at a larger angle, or have different opening angles and different opening speeds for each door? We will get to that at a later door in this level. The key is to understand what we are doing here. Scripting is a building process much like building a level. You build the simple parts first and work up to the complex as you go.

Sliding Door Action:

For our elevator door we have a door that slides back into a recessed area vs. rotating. We want to use the same spacebar press for scan to open this door as well.

Door is open or closed.

Door is hit by a scan

Door checks to see if it is opened or closed and it if it is moving.

Door moves its own width in distance to the open or closed position

Resets moving flag to not moving and sets open/closed flag.

Looks similar to our rotating door in operation except that it slides Being so we can use the same basic layout structure of the rotate door script for the sliding door. You might think “ well its moving on like our player entity so I could use ent_move here”. You could, except for its bounding box. Ent_move uses movement collision detection and the size of the door its bounding box is larger then our recess opening. The box would keep it from moving. We could tell the door to ignore blocks when moving or we can also adjust its collision hull size, but let us leave those 2 subjects for later.

action slide_door

{

wait(1);

my.enable-scan = on;

my.event = scan_event;

my.skill1 = 1; //-1 = open, 1 = closed

my.skill2 = my.x; // original X start position we use X instead of pan like in the rotating door

my.skill3 = 0; // moving or not

my.skill4 = 0; // adjustment off the start X

while (1)

{

while (my.skill3)

{

my.passable = on;

If (my.skill4 > 80) // if the door is open

{

my.x = 80; //set door to max open position

my.skill1 = -1;

my.skill3 = 0;

}

else // the door is closed

{

if (my.skill4 < 0) // door is in closed position

{

my.x = 0; // set door to closed position

my.skill1 = 1;

my.skill3 = 0;

}

}

my.x =0 + my.skill4 + my.skill2;

my.skill4 += my.skill1*2*time;

wait(1);

}

wait(1);

}

}

Only real differences is we are moving on the X axis instead of PAN, and the movement range is 0 – 80 quants because my door was 80 quants wide on the X axis.

[image: image17.png]
So our rotate door script only needs to be adjusted for these to handle our sliding door. For now we will make this a separate action as you see above. Later as we refine our door script actions we will integrate them into one door action.

Save this action to the script. Assign the action to the elevator door, save and build level then run and test it. If you run into any problems with how your doors move at this point look for the problems in these locations:

Script, be sure you followed along line by line how each was built

Door map entities, be sure you set their origin point correctly and aligned them lengthwise on the X axis.

Level position, be sure they are sitting INSIDE the door frame to start (like the door is closed) in ALL 3 2D building windows and that you don’t have the door built, even 1 quant too big for the frame.

Slide door recess area be sure its of the correct height and width to fit the door when it slides. Even one quant too small can hold it up.

Simple Level Change:

Boy, I bet some of you were really wanting to get to this point (. You have basically 2 ways to do level changes: a 1-way level change and a 2-way level change. 1-way is classic of the FPS type game in which once you go from one level to the next, you cannot go back. 2-way of course then is you can go back and forth between 2 levels. Players change levels once they complete the condition YOU as the designer, set for that level change, be it reaching the exit, kill all the badguys, solve a puzzle/maze and so on.

The basic steps of a level change are as follows:

1. Player completes the condition(s) to initiate the level change.

2. Game relative data that must carry over from one level to the next is saved.

3. Game execution is ‘freezed’ to keep actions, functions,loops from executing while data is being loaded and unloaded.

4. New level is loaded.

5. Short pause to done to give the level loading time to load data, and set actions to entities properly.

6. Relative game data is then re- applied from the save.

7. Game is unfrozen

Common question I see often asked: “When you do a level change, does the game keep using the script from the first level or does it now use the script from the new level?”. Answer, it uses the first script it loads at the start of the game throughout the entire game. Take our TLlevel1 and TLlevel2 levels for example. If we set up a level change right now from level1 to level 2 it would use the script we have saved for level1. Soon as level 2 would try to start we would get errors stating it cannot find the rotate_door and slide_door actions. Because in the TLlevel1 script they don’t exist. Another thing it wouldn’t even be able to find TLlevel2.wmb or our map entities for the doors because? They aren’t in the same folder as TLlevel1.

Do I have to copy everything from level2 folder to level1 folder then? What if my game has 30 levels? Everything has to be in one BIG folder? No, and you shouldn’t do that either. We just need to do some organization of our folders first then insert a few lines of code in our script to tell our game where everything can be found. So lets organize the folders first.

Be SURE when you move your script that the one you want is from the TLlevel2 folder, not the TLlevel1. Else you will have to redo all the work we did in this section again.

[image: image18.png]
I create folders under my Gstudio6\FPS folder:

· Entities I move all model and map entity files here from my old folders

· Images I move all .bmp,.pcx, .tga files here

· Levels I move all level related files to this folder under the appropriate subfolder

· TechoLabs all Techno Labs level 1 & 2 files AND my script will be here

· Scripts copy of my script here

· Temp backup storage for other junk not related to my game like testing levels

I also rename my script from level1.wdl to game.wdl, one copy goes in my Techno Labs folder, the other in scripts folder.

Open my TLlevel1 level and change the script to game.wdl and save:

[image: image19.png]
I do the same with TLlevel2.

You will notice all your entities in your levels turn to little boxes. You can ignore this… just DON’T try running any level yet.

Now we will edit our script so open game.wdl

We are going to give our script instructions where each folder is. The instruction is called PATH “ “;.

It follows the C language path definition requirement that where DOS takes 1 ‘\’ in setting a path C requires 2 ‘\\’. (in C, the \ is a string command indicating a special character or operation like \n is the ‘new line’ instruction. \\ indicates to insert a \ character here). Since my GameStudio folder is installed in the default installer path and my game folders is in the FPS folder under it my path is:

path"C:\\Program Files\\Gstudio6\\FPS\\scripts";

path"C:\\Program Files\\Gstudio6\\FPS\\entities";

path"C:\\Program Files\\Gstudio6\\FPS\\images";

path"C:\\Program Files\\Gstudio6\\FPS\\levels\\TechnoLabs";

You can designate up to a maximum of 32 folders this way. The order makes a difference. If you have a file in scripts called bob.bmp and a totally different bob.bmp in images the script will load the first one it encounters… in scripts folder. So be mindful of duplicate names.

Save your script. (and make a copy for the scripts folder)

Open TLlevel1 level and open the script there as well. We are going to make the start of our level change script, a 1 way level change. We already have start points in both levels, where we have our cbabe models placed in each level. We also are going to have the level change happens when the player entity has a collision impact with the ‘zoneblock’ map entity. So our level change will require an action assigned to that block.

Action zone_block

{

}

we make the entity sensitive to impacts:

my.enable_impact = ON;

and we need an event function that checks to be sure it was an impact event. With an impact event we MUST wait one frame to let the ent_move instruction that causes the event_impact event to complete its move. Else the event_type doesn’t always get set correctly AND the move while still in motion can cause multiple impacts.

function level_change()

{

wait(1);

if (EVENT_TYPE == event_impact)

{

}

}

my.event = level_change;

Now, we are all set but for actually handling the level change. Looking at the list on the level change steps again:

1. Player completes the condition(s) to initiate the level change.

2. Game relative data that must carry over from one level to the next is saved.

3. Game execution is ‘freezed’ to keep actions, functions,loops from executing while data is being loaded and unloaded.

4. New level is loaded.

5. Short pause to done to give the level loading time to load data, and set actions to entities properly.

6. Relative game data is then re- applied from the save.

7. Game is unfrozen

1. condition is impacting the zoneblock

2. no data to save yet

3. need this

4. need this too

5. need the pause

6. no data to re-apply, nothing saved

7. need this

So we need 3-5 and 7

To freeze a game we use : freeze_mode = number; number being a value of 0 or higher. 0 the game is not freezed. 1 and higher the game will freeze. This will pause the game.

You know the level_load command by now, at least a bit about it: level_load(string); string being a string of the .wmb file name

The pause needs to be at least 2 frame cycles: wait(2);

Unfreeze the game change freeze_mode back to 0;

function level_change()

{

wait(1);

if (EVENT_TYPE == event_impact)

{

freeze_mode = 1;

level_load(“TLlevel2.wmb”);

wait(2);

freeze_mode = 0;

}

}

There is a problem with this function, can you think of what it is? Give you a hint, when a level is loaded, ALL entities, including any actions or functions instances associated to them are removed. That’s right, this function is an instance of the ‘zoneblock’ entity. As soon as the load_level instruction is hit, the zoneblock is removed, including this function. The game will lock up. We need a way to remove this functions instance out from under the zoneblock entity then BEFORE we load the next level. How do we know which entity this instance of this function is associated to? The me/my pointer of course, so by setting my = NULL; this function instance no longer belongs to the zoneblock entity and will run on its own.

function level_change()

{

wait(1);

if (EVENT_TYPE == event_impact)

{

my = NULL;

freeze_mode = 1;

level_load(“TLlevel2.wmb”);

wait(2);

freeze_mode = 0;

}

}

action zone_block

{

my.enable_impact = on;

my.event = level_change;

}

save the script, assign the action zone_block to our ‘zoneblock’ entity in TLlevel1. Save the level and build with Update entities button selected. Run. If the zoneblock is no longer invisible, just reflag it in its properties and save with build/update entities.

You should now be able to move from TLlevel1 to TLlevel2. Now we want to be able to go back to TLlevel1. This will take a some modification to our level_change function.

First we need to know what level we are going to when we hit the zoneblock. We can use an entity skill easy for this, so lets use skill1

.

My.skill1 = level to change to

Then we need to store that value into a temporary variable because as soon as we remove our function out from under our entity we no longer have a skill1 to read.

Var changeto_level = 0; //we will make this variable a global variable

Changeto_level = my.skill1;

Now we need a check to see which level we are changing to

If (changeto_level == 1)

{

// goto TLlevel1

}

if (changeto_level == 2)

{

// goto TLlevel2

}

so here we now need 2 level_load instructions, one under each if statement

as well as zero out the value of changeto_level

changeto_level = 0;

level_load("TLlevel1.wmb");

changeto_level = 0;

level_load("Tllevel2.wmb");

to get our function to this:

Var changeto_level = 0;
function level_change()

{

wait(1);

if (EVENT_TYPE == event_impact)

{

changeto_level = my.skill1;

my = NULL;

freeze_mode = 1;

if (changeto_level == 1)

{

changeto_level = 0;

level_load("TLlevel1.wmb");

}

if (changeto_level == 2)

{

changeto_level = 0;

level_load("TLlevel2.wmb");

}

wait(2);

freeze_mode = 0;

}

}

Save your script.

Now you need to alter both levels before you can test it. In BOTH levels you need to open up the properties window of our zoneblock. On the Behaviors TAB of TLlevel1 set Skill1 to a value of 2 (for TLlevel2), Save build as update entities. For TLlevel2 set the Skill1 to a value of 1 (for TLlevel1).

[image: image20.png]
Run and test it out. You should notice, as you go from Tllevel2 back to Tlleve1 you end up back at the entrance start point. That’s because our player entity in the level entrance, but we don’t want to move it to the level change point else we start the level there, which won’t make sense. Notice between the 2 levels the zoneblock is in different locations in the same hallway in which we go past half ways point either way to get to the next level. We did this on purpose to give us some room so if both blocks were at the same exact spot when we change level we don’t keep changing level, stuck on this zoneblock.

To fix the entity when moving between levels we need to save the player x/y/z and pan/tilt/roll BEFORE the level_load (which will remove our player entity) then reapply it back on the new player entity in the new level loaded.

We need 2 global vectors to store the player data

var temp_loc[3];

var temp_ang[3];

before we load the level we need to copy the player data to these temp vectors

vec_set(temp_loc,player.x);

vec_set(temp_ang,player.pan);

then after the level is loaded apply the data back on the player entity

vec_set(player.x,temp_loc);

vec_set(player.pan,temp_ang);

var changeto_level= 0;

var temp_loc[3];

var temp_ang[3];

we also need two lines around

wait(2);

freeze_mode = 0;

to:

freeze_mode = 0;

wait(2);

Why? Because if we don’t, the player pointer doesn’t get time yet to get set to the entity. So when we hit the next to lines (the vec_set to copy the data back to the player entity we will get an empty pointer error.

var changeto_level= 0;

var temp_loc[3];

var temp_ang[3];

function level_change()

{

wait(1);

if (EVENT_TYPE == event_impact)

{

changeto_level = my.skill1;

my = NULL;

vec_set(temp_loc,player.x);

vec_set(temp_ang,player.pan);

freeze_mode = 1;

if (changeto_level == 1)

{

changeto_level = 0;

level_load("TLlevel1.wmb");

}

if (changeto_level == 2)

{

changeto_level = 0;

level_load("TLlevel2.wmb");

}

freeze_mode = 0;

wait(2);

vec_set(player.x,temp_loc);

vec_set(player.pan,temp_ang);

}

}

Save and Run. Just one more little problem but an easy fix. When we change level, we get a short little flash of where our player entity is at the entrance before it is moved to the level change location. The fix:

We turn the camera off before we freeze the game, then turn it back on after we set the player entity to our temp_loc and temp_ang values.

var changeto_level= 0;

var temp_loc[3];

var temp_ang[3];

function level_change()

{

wait(1);

if (EVENT_TYPE == event_impact)

{

changeto_level = my.skill1;

my = NULL;

vec_set(temp_loc,player.x);

vec_set(temp_ang,player.pan);

camera.visible = off;

freeze_mode = 1;

if (changeto_level == 1)

{

changeto_level = 0;

level_load("TLlevel1.wmb");

}

if (changeto_level == 2)

{

changeto_level = 0;

level_load("TLlevel2.wmb");

}

freeze_mode = 0;

wait(2);

vec_set(player.x,temp_loc);

vec_set(player.pan,temp_ang);

camera.visible = on;

}

}

Save the script and run.

Only noticeable indications that we even changed levels is a tiny pause and a definite difference in lighting. The lighting we can fix when we add lights to TLlevel2, the pause we cannot do anything. That wait(2) HAS to be there else the level doesn’t have enough time to load AND action iterations get set to entities and my and player pointers won’t get set. (level_load.. the level data loads, 1st frame entities are loaded and action assigned, 2nd frame the my pointers get assigned and actions start execution).

Now we got a nice level change set up that s easy to expand for more levels with little extra work.

The key to scripting an action, function or event is list the exact order of what is to occur IN the order it occurs. So you need to imagine what it happening and break it down step by step, piece by piece. The write it out. Writing it up will let you spot what you got wrong in the order or what you are missing and each step will solve 80%-90% of the scripting.

Example, our level change broken down as we did above:

· Player entity moves

· Player entity impacts against ‘zoneblock’ triggering an event

· Determine what level we are changing to

· Store player and other entity data needed for the next level

· Freeze the game

· Load the next level

· Wait a pause of at least 2 frames

· Unfreeze the game

· Re apply the stored data to the new levels entities

Elevatorshaft and elevator scripting:

Before we can script our elevator, we need to build the shaft, but to build the shaft, we need to know how high to make it from the floor of our hallway to the floor of the hallway above. The stairs in Room 10 will be the key for the height of the floor. Instead of doing the math to figure out how many stair steps I need for Room 10 to get my floor I’m going to just use my existing stairs from TLlevel1.

I open my old stairs and grab everything but the railing parts that went along the ledge in level1. Copy and pasted it into a new level. Duplicated it 3 times and aligned each dup. to make one long stairs then tweaked the trim pieces to fit. Duplicated the entire thing and aligned the dup. to make the stairs twice as wide, then moved the dup. handrail to the other side of the stairs:

[image: image21.png]
Now I set a block in the area of room10 for the floor and line its top even with the hallway floor. Place my stairs on it someplace so I can get an accurate height placement of blocks for the walkway and hallway floor.

From here I just place a few blocks down to get walkway, hallway, some walls in place to get a general layout for the room10 and hallway back to my elevator shaft. Now I got a height for the shaft so I first copy the elevator door and frame and set that to the correct height then extend the shaft walls and place a ceiling on the shaft. Also decided to add a second stairs up to the 3rd level in room10 then went around and applied a few surface textures. In no way are these rooms and walls done, just placed to get a start point to continue construction.

[image: image22.png]
Because I copied the lower level door and frame, it already has the action assigned to our door. What we need now is to get our elevator moving up and down. We can actually use our slide_door script with just a few modifications because it works on the same principle just a different direction and distances.

We do run into a problem though, how to trigger our elevator to move. This elevator we want it to move when the player steps on it, but not move again for a set time so the player can get off before its triggered to move again. Event_impact won’t work because our player doesn’t impact it and scan won’t work because we would have to modify our scan cone which would mess up our door scan

What we can use for a trigger though that points at the ground is our player entities trace. We can use the event_sonar (an event an entity hit by a trace reacts to).

Lets modify our slide door script to handle the movement first. We just copy the slide door action, give it a new name ‘elevator’. I also copy my function event_scan and rename it event_sonar

function sonar_event

{

if (EVENT_TYPE == event_sonar && my.skill5 != 1)

{

my.skill3 = 1;

my.skill5 = 1;

}

}

action elevator

{

my.enable_sonar = ON;

my.event = sonar_event;

wait(1);

my.skill1 = 1; //-1 = top, 1 = bottom

my.skill2 = my.z; // original start position we use z instead of pan like in the rotating door

my.skill3 = 0; // moving or not

my.skill4 = 0; // adjustment off the start z

my.skill5 = 0; // 0 = player not on, 1 = player on

my.skill6 = 0; // 0 = not moved, 1 = moved

while (1)

{

while (my.skill3 == 1 && my.skill6 == 0 && my.skill5 == 1)

{

If (my.skill4 >= 320) // if the elevator is at top

{

my.skill4 = 320; //set elevator to max top position

my.skill1 = -1;

my.skill3 = 0;

my.skill6 = 1;

}

else // the elevator is at bottom

{

if (my.skill4 <= my.skill2) // elevator is at bottom

{

my.skill4 = 0; // set elevator to start bottom location

my.skill1 = 1;

my.skill3 = 0;

my.skill6 = 1;

}

}

my.z =0 + my.skill4 + my.skill2;

my.skill4 += my.skill1*2*time;

wait(1);

}

if (my.skill5 == 0 && my.skill6 == 1)

{

my.skill6 = 0;

}

else

{

sleep(5);

my.skill5 = 0;

}

wait(1);

}

}

Also one more change is needed. In the player_move action we need to add to the trace_mode line to have it trigger sonar events like this:

trace_mode = ignore_me+ignore_sprites+ACTIVATE_SONAR+IGNORE_MODELS+USE_BOX;

changes for the door action consisted of a new event function, set the action to respond to a trace sonar event, altered movement direction from the X axis to the Z axis, use a skill as a flag to check if the player has got off the elevator or not after it has moved. (so it won’t move again until after the player has got off it.). It’s pretty easy really, all we are doing is setting 2 extra flags. 1 if a tracing entity is ON or OFF the elevator pad (my.skill5), and 2 if the pad has moved or not (my.skill6)

Save and run our level. The elevator should now move as you step on it and stop at the top. It won’t move again until we step off it then get back on it.

Updating rotating door action:

You may notice we are starting to use several skills per entity now as well as our doors and elevator are pretty much locked into how far and what direction they move. Our level has 1 more rotating door, sliding doors and another elevator. We will use them to make our actions more universal for usage and see how we can assign names to our entity skills so code wise its easier to read as well as allow us to enter parameters into our skills by name vs. skill number (like we did with our ‘zoneblock’)

I moved my Room 7 so it is over my room 4 (flipped it) so now my rotating door needs to rotate opposite direction then standard. (i.e. it opens to the right hand side)

[image: image23.png]
That glass in my door there? Yep I’ll show you with this door one of the ways in how to put a transparent glass inset in a door too (. Lets build the door first as you create other doors, aligned to the origin as a map entity.

[image: image24.png]
Save this. Delete the glass part out. Save As.. a new file NOT over the original and build just that door frame as a map entity. Reopen the original door with the glass.. Delete the door frame so only the glass remains, Save As.. a new file, then build as a Map Entity.

Now in my TLlevel2 I add in my door map entity (the one without the glass), give it my rotate door action.

Add in my door glass map entity. Set it to transparent flag, give it the rotate door action as well and then position it inside the door frame opening for the glass. Save Level. You can build and run it but the door will rotate backwards. Go and try it, then we will work on our script.

We will need to determin a few bits of information before we can rework our door script.

1. Amount and direction of door rotation around pan angle (+ or – number)

2. Speed which door is to open/close

3. If door should close automatically or not

4. How long of a delay before it automatically closes (if it does)

All these values we will use skills which we can set in the under the behaviors tab for our door entities.

We are already using these skills:

my.skill1 = 1; //-1 = open, 1 = closed

my.skill2 = my.pan; // original starting pan angle

my.skill3 = 0; // 0 = door not moving, 1 = door is moving

my.skill4 = 0; // doors current pan angle while it is moving

Since the behaviors tab only lists the first 20 of our 100 skills for the entity we want all we can free of the first 20 for user input when setting up the entity.

These are skills we will never alter info on, only the action will, so lets re adjust them to skills higher than #20.

my.skill51 = 1; //-1 = open, 1 = closed

my.skill52 = my.pan; // original starting pan angle

my.skill53 = 0; // 0 = door not moving, 1 = door is moving

my.skill54 = 0; // doors current pan angle while it is moving

We then add our needed skills to the first 20 that we WILL be altering their values for every door

my.skill1 // direction and angle amount to move the door

my.skill2 // door open/close speed

my.skill3 // automatic close delay

What about our flag for door to auto open or not? For this we are going to use another set of variables under our entity, called interesting enough, Flags. These are just binary flags that hold either a 0 or 1 (ON/OFF, YES/NO , TRUE/FALSE). An entity has 8 such flags all of which can be set as check boxes in the behaviors TAB of the entity properties

We access them same as skills: my.flag1 … my.flag8

So for our auto close we will use:

My.flag1 // our auto close flag

As you can see, are starting to get several skills and a flag that will be involved in our script, without adding // comments everywhere we might have a time keeping what is what straight in our heads. We can DEFINE names for skills and flags. DEFINE is used:

DEFINE name, item; // name being a name following variable naming conventions

Defines are global in scope to our scripts BUT to use them on local definitions we must designate for the action or function what defines are being used. We use the c-script comment tag: // uses: RIGHT before the action or script declaration actions or functions that use comment tags must be preceded and followed by a blank line. Lets use our level_change function and zone_block action for an example because its only using one skill.

First we need to define a name for our skill1 (the level we are changing to skill value)

DEFINE Goto_Level,skill1;

Now we set // uses Goto_level before both our function and action making sure I have a blank line before the //uses and after the function/action definition. I also replace any skill1 with Goto_Level. NOT my.skill1 to Goto_Level, it would be my.skill1 is now my.Goto_Level

 // …

 //… something up here

}

// uses: Goto_Level
function level_change()

{

changeto_level = my.Goto_Level; // changed the my.skill1 to now my.Goto_Level

}

// uses: Goto_Level

action zone_block

{

my.enable_impact = on;

my.event = level_change;

}

function some_function_here()

{

 ///…

Save your script. Now if you opened up the properties window of your zoneblock in TLlevel2 and looked at the behaviors tab, in the skills list instead of saying skill1 = 1, it will now read Goto_Level = 0

[image: image25.png]
Also anytime within That action or function we can refer to skill1 as Goto_Level instead.

Lets Look at how we would set up our rotate_door action and scan_event function:

DEFINE Pan_Range, skill1;
// direction and angle amount to move the door

DEFINE Rotate_Speed,skill2;
// door open/close speed

DEFINE Auto_Close_Delay,skill3; // automatic close delay
DEFINE open_closed,skill51;
//-1 = open, 1 = closed

DEFINE start_angle,skill52;
// original starting pan angle
DEFINE moving,skill53 ;
// 0 = door not moving, 1 = door is moving

DEFINE current_angle,skill54;
// doors current pan angle while it is moving
DEFINE Auto_Close_Flag,flag1;
// auto close flag

You might say “Wait! We already defined skill1 as Goto_Level, how can we use Pan_Range for skill1 also?”. Define allows us to define multiple names to the same thing. It’s the //uses: that specifies what action/function will actually be using. Multiple definitions under //uses: is separated by ‘,’ commas

// uses: open_closed

function scan_event

{

if (EVENT_TYPE == event_scan)

{

my.open_closed = 1; // changing this makes our slide door not work (for now)

}

}

// uses: Pan_Range, Rotate_Speed, Auto_Close_Delay, open_closed, start_angle, moving, current_angle, Auto_Close_Flag

action rotating_door

{

wait(1);

my.ENABLE_scan = ON; // sensible for scans

my.EVENT = scan_event;

…

}

Notice I made my own naming convention here. Skills that a user can input values by the behavior tab are capitalized, those just used by the action/function internally in small case. Helps me keep track of what is what besides just the names. Put in the DEFINES as well as the 2 //uses: lines and save the script. Check WED under any rotating door properties make sure the names pop up right. We also cannot use our slide doors now till we redo that action because our scan_event now uses a different skill.

[image: image26.png]
We start by plugging in out defines for our skills in the main parts of the action, move our rotation to before our IF ELSE checks and alter it to adjust for Rotate_Speed and the sign (+/-) of the Pan_Range.

If checks for open and closed we now need to check vs. the Integer value of current_angle and int of my.PAN because while the door moves they won’t be solid whole numbers by the time they reach the open and closed ranges. Finally, add in a check to see if our Auto_close_flag is set when the door closes, if set have the door sleep(Auto_close_delay) a number of seconds before starting the close movement.

action rotating_door

{

wait(1);

my.ENABLE_scan = ON; // sensible for scans

my.EVENT = scan_event;

my.open_closed = 1; //-1 = open, 1 = closed

my.start_angle = my.pan; // original starting pan angle

my.moving = 0; // 0 = door not moving, 1 = door is moving

my.current_angle = 0; // doors current pan angle while it is moving

while (me!=NULL) // while I exist

{

while (my.moving) //while door is moving

{

my.current_angle += my.open_closed * my.Rotate_Speed * sign(my.Pan_Range) * time; // calculate new current_angle

my.pan = int((my.current_angle+my.start_angle)%360); // adjust my.PAN by current_angle and start_angle and keep it within 360 degree range

if (int(my.pan) == my.start_angle) // door is closed

{

my.pan == my.start_angle; // sets door to closed/start position

my.open_closed = 1; // flags door as closed

my.moving = 0; // sets door to stop moving

}

else

{

if (int(my.current_angle) == my.Pan_Range) // checks to see if current_angle is equal to the opening range

{

my.pan = int(my.current_angle)+my.start_angle; // sets door to full open position

my.open_closed = -1; // flags door as opened

if (my.Auto_close_Flag == ON) // check if door is set to auto_close

{

sleep(my.Auto_close_Delay); // waits a number of seconds before door auto closes

}

else // door doesn’t auto close

{

my.moving = 0; //flags door to stop moving

}

}

}

wait(1);

}

wait(1);

}

}

Basically it’s the same script as before, just changed numbers to the skills, moved the rotation calculations and added the auto_close check. Now go into each of our door properties (don’t forget the window of the room7 door as well. The office doors you can set the behaviors like in picture 1, and the room7 door and glass like picture 2.

[image: image27.png]
Save script and level, build /entity update, and run. Try your office doors. To try upstairs breakroom door move player entity up into the room and re save/build.

Much nicer rotating door script. We can add on to handle locked doors, keys, door switches and even doors that automatically open as you approach. We will do locked doors and keys in TLlevel3.

Updating our Sliding door script:

Now we want our sliding door to handle going in any axis direction X, Y or Z + or – directions.

Since 3 directions is a vector, we can use vector math here. If we use 3 skills IN ORDER (such as skill1, skill2, skill3 we can use them same as a vector:

vec_set(temp.x,my.skill1);

would be the same as writing

temp.x = my.skill1;

temp.y = my.skill2;

temp.z = my.skill3;

As before, first we need to set up our skills ones we used from rotating door and many new ones to handle starting vector, end vector, speed X,Y, or Z and distance to move.

//

// sliding door defines

//

DEFINE X_Distance,skill1;

// distance to move X direction
DEFINE Y_Distance,skill2;

// distance to move y direction
DEFINE Z_Distance,skill3;

// distance to move z direction
DEFINE X_Speed,skill4;

// speed to move X direction

DEFINE Y_Speed,skill5;

// speed to move y direction
DEFINE Z_Speed,skill6;

// speed to move z direction
DEFINE Slide_Auto_Close_Delay,skill8;
// automatic close delay

DEFINE open_closed,skill51;

//-1 = open, 1 = closed
DEFINE moving,skill53 ;

// 0 = door not moving, 1 = door is moving
DEFINE start_x,skill61;

// start X location
DEFINE start_y,skill62;

// start Y location
DEFINE start_z,skill63;

// start Z location

DEFINE end_x,skill64;

// ending x location
DEFINE end_y,skill65;

// ending y location

DEFINE end_z,skill66;

// ending z location

DEFINE Slide_Auto_Close_Flag,flag1;
// auto close flag

//

I then re-write my door action for vector handling based on my rotating door script.

//

// Sliding door action

//

//uses: X_Distance Y_Distance Z_Distance X_Speed Y_Speed Z_Speed Slide_Auto_Close_Delay open_closed moving start_x start_y start_z Slide_Auto_Close_Flag end_x end_y end_z

action slide_door

{

wait(1);

my.ENABLE_SCAn = on;

my.event = scan_event;

my.open_closed = 1; //-1 = open, 1 = closed, skill51

my.moving = 0; // moving or not, skill53

vec_set(my.start_x,my.x); // original start position

vec_set(temp.x,my.start_x); // sets start vector to temp

vec_add(temp.x,my.X_Distance); // adds the move distances to temp vector

vec_set(my.end_x,temp.x); // sets the my.end vector to temp four our door ending vector location
// Here I am just doing some set up before the entities handling loop. I set the door to be flagged as closed, set up my start location vector (my.start_x) then set up the ending location vector (my.end_x) by setting temp to = my.start_x, then adding the distance we set in the behaviors panel for X/Y/Z distances to move, then finally copying that temp vector to set the doors ending vector location (my.end_x)

while (me!=NULL)

{

while (my.moving)

{

// adjust x/y/z for movement speed and direction to move

my.x += my.X_Speed * my.open_closed *sign(my.X_Distance)*time;

my.y += my.Y_Speed * my.open_closed *sign(my.Y_Distance)*time;

my.z += my.Z_Speed * my.open_closed *sign(my.Z_Distance)*time;

//Here I just do my calculations on X/Y/Z directions for speed and direction of movement. The sign(my.X_Distance) is to handle direction movement. Say if we wanted our door to move in a negative direction. I.e. if I wanted my elevator door to slide to the left instead of right I would enter a –80 for X_Distance in the behaviors panel instead of 80. So I read the sign (+ or -) off it to get its direction to move

if (my.open_closed == 1 && vec_dist(my.x,my.end_x) < 1)

//is door closed but less than 1 quant distant from open location?

// here I check the distance between the doors current location vector to it’s end location vector to see if its really close to being in the fully opened position

{

vec_set(my.x,my.end_x); // if so sets door to open location

my.open_closed = -1; // flags door as open

if (my.Slide_Auto_Close_flag) // checks to see if door is set to auto close

{

sleep(my.Slide_Auto_Close_Delay); // if so waits out the delay before closing

}

else

{

my.moving = 0; // if not auto close the door is set to not move

}

}

else // if the door is not closed flagged and not near open location

{

if (my.open_closed == -1 && vec_dist(my.x,my.start_x) < 1)

// door open flagged and near closed location?

// I do a similar check on the distance of the doors current location to its start location here see if it is close to being closed

{

vec_set(my.x,my.start_x); // if so set door to closed location

my.open_closed = 1; // flag door as closed

my.moving = 0; // stop moving the door

}

}

wait(1);

}

wait(1);

}

}
//

This wouldn’t be any different then handling a door for only 1 Axis as we did before, but with vector calculations we get the added ability to check and handle 3 axis at once.

NOTE: this script does not handle yet to see if the door is moving on 2 more axis and it has reached it’s start or end locations on an individual axis in its movement . So for now DON’T enter 2 or more distances for a single door. We will do the handling for that later when we get to moving platforms and modifying our elevator script

Save the script, then in WED you need to enter values into the behaviors settings for each sliding door.

[image: image28.png]
Easy way to now calculate how far to move the door is just look at the axis it is set on (X/Y or Z),

Which way you want it to slide on that axis (+ or – axis direction), and how far (measure the length of the door in that direction in quants). So for my elevator door, it’s on the X axis, I want it to go right (the + direction on the X axis) and my door is 80 quants wide along the X axis) so in X_Distanace I enter +80.

Speed, I try a number and test it. if too slow I raise it, too fast I lower it.

[image: image29.png]
For my doors upstairs I have them sliding upwards, not to the side. So its + Z axis direction and my door is 96 quants tall.

Save, build/update entities. Run. Adjust door speeds as needed.

Some more Level building tips:

Archway: As we seen before archways made by using CGS create a mess, instead we want to use blocks and build up the archway structure, keeping as many surfaces of each block aligned to the level axis.

[image: image30.png]
In picture 1 I place several square boxes along one side of my archway with the last box being at the bottom edge where I want the archway to start curving.

Picture 2, I use edge move on the bottom box to pull the bottom left edge to join with the bottom right edge (forming a triangle. NOTE: once you align one edge to another those edges merge and cannot be separated). I then pull the top left edge over so not to have too much of an angled face off the wall.

I proceed to the box above that and adjust edges again, this time bottom left aligned to top left of 1st box. Top left of current box a bit more of an angle off the wall than the first box.

By my 3rd and forth boxes I end up needing to split them, to 2 smaller boxes because the angled surface get to be too long for a single box to create and arc. I make sure also that my top box upper left edge doesn’t go past the center point of my archway opening.

Picture 3 I duplicate all my angled boxes, then rotate and fit the duplicate to the other side of my archway opening. Then from there I tweak my edges equally on both sides of the archway so it looks more roundish (i.e. if I move one edge, I move the corresponding edge on the opposite side of the archway the same distance)

Picture 4 I finish it up by texturing the surfaces and test it in the RUNTIME engine for possible rendering flaws (this pic is from runtime not the 3D view in WED, just no lights applied yet)

Glass:

As we seen here and in TLlevel1 we can use a transparent map entity to simulate glass. We can do the same with a sprite.

[image: image31.png]
I find a where I want my glass (in this case a 3 windows wall) decide I can sue just one BIG sprite to fill all 3 windows. So I measure the size of the X/Z and add about 8 quants or so to give a little overlap into the walls. In my paint program I make a new file to that X/Z size and texture it with the one of the glass textures from the standard.wad. (or a plasma/cloud texture will work as well)

[image: image32.png]
Insert it into my level, set its flag to transparent and adjust one of its angles by .001 (like I did in TLlevel1 for my wall picture and Techno Labs sign) which will keep it from rotating always to face the player. Then add some trim detail blocks (optional) for some framework.

Save/build and run.

[image: image33.png]
If its too transparent or not enough, you could make a simple little action and assign it to the sprite to adjust it

Action glass_sprite

{

my.transparent = on;

my.alpha = 50; //default transparent flag value
}

just twiddle with the alpha setting to get how transparent you want it range 0 - 100. alpha = 100 is totally transparent alpha = 0 is solid. (in the picture above its at the default setting)

Lighting:

As you know by now, geometry builds should go fairly quickly, but lighting takes a LONG time to calculate and can get to be a pain to need to run several builds just for lights. This level without lights takes my system about 3 minutes to build. With lights set on minimum light build, takes about 8 hours. An update entities build takes about 6 seconds. Should show you again, get all your blocks and texturing work done before trying to put in ANY light (including SUN or level ambience).

6.22 makes placing lights allot easier visually IF you take advantage of the GXL DLLs in A6.

Make sure you have your GXL DLLs set in WED preferences.

[image: image34.png]
Your specific video card will determine which .DLL you can use. (mine is a Gforce 5200 FX, the gxl2Dx8a.dll doesn’t always render things right in my 3D view). These DLLs handle rendering textures terrain lights etc in your WED 3D view.

[image: image35.png]
Pic 1. Now be sure you have nothing selected in WED (edit->select NONE) right click in the 3D view and select GXL properties to get a properties window.

Pic 2. Check mark all the lighting flags

Pic. 3. Set default sun and default ambient to 0

Pic. 4. Now as you set lights and adjust them for color and range you can see how they will ‘generally’ effect the level. Note: its not 100% accurate on brightness, effect on textured surfaces but it will sure get you in the ballpark area for coverage, overlapping light ranges and general overall lighting look.

Jumping:

Like in most FPS games we need to be able to have our player jump. Jump over things, jump on boxes, jump off ledges (fall). For this level we will create a few map entity boxes and put them in our warehouse room so we got some things to jump on.

First we need to find out just how high our cbabe can jump. To do this we look at her jump animation in MED. We see she has 5 frames to jump: standing, jump up, peaks out, falls, and lands and that she has 22 quants distance from bottom of foot at stand to bottom of foot at peaks out frames.

[image: image36.png]
For our jump handling we only need to worry about the stand, jump up and peak out frames.

The falls and lands frames we are going to handle all that with our player entity falling. So lets do the falling part first.

So we need to calculate:

1. Are we falling? If so we stop all forward/backwards/strafe movement input

2. Falling speed (gravity)

3. Cycle to falling animation frame

4. How far to fall yet

5. If falling distance is less than some amount, cycle to the land animation frame

6. Finish fall by cycling animation from landed to stand frame

7. Restore movement input

For 1. Our trace handles the check if we are falling so we need to set a minimum distance to fall before we want to kick in falling else we will be falling at every step like going down stairs or stepping off a very small ledge. We will use a skill to flag if our entity is falling and keep track of distance. I’ll use skill30 for falling flag and 31 for distance (we can start cleaning up our player action by starting to define skill names here)

DEFINE falling,skill30; // 0 for not falling 1 for falling
DEFINE fall_distance,skill31; // distance to fall

In our action we set falling flag to a default start value of 0

My.falling = 0; // I’m not falling
Our current trace looks like this:

vec_set(temp,my.x);

temp.z -= 4000;

trace_mode = ignore_me+ignore_sprites+ACTIVATE_SONAR+IGNORE_MODELS+USE_BOX;

move_vec.z = (-trace(my.x,temp))*time;

We need to do some changes here to the last line

My.fall_distance = trace(my.x,temp);

Now we need a minimum distance to fall before we can kick in animations. We know our stair steps are 16 quants apart in height, so lets give it some more space before we consider it to be falling, say 64. Otherwise if its less than 64 we just want to drop as normal like on stairs. We just plug in my.fall_distance in place of trace(my.x,temp) as that is the same as our fall_distance value and we check to see if fall_distance is not negative (means we need to move UP not fall)

If (my.fall_distance >64 && sign(my.fall_distance) != -1)

{

my.falling = 1; // now I’m falling
}

else

{

if (my.fall_distance < 64 && my.falling == 0) // keep us on the floor normally

{

move_vec.z = -my.fall_distance*time;

}

}

Since falling is always going to be in a –Z direction and in real life, falling is acceleration until you reach a maximum fall speed. We need a movement vector speed for our fall rate: lets try –.5*time and we also need a maximum fall rate which we can try –20*time

If (my.fall_distance >32)

{

my.falling = 1; // now I'm falling

if (move_vec.z > -20*time) // if not falling at maximum fall rate

{

move_vec.z -= .5*time; // then increase my fall rate

}

}

Lets save this then copy our game .wdl over to our temp test level because we want to be able to see our model for handling the animation part.

Don’t forget to set the correct level to load in the main function, also comment out the camera stuff in player_move action.

Because the static camera limits our view area and we need more room to test falling lets have the static camera follow our player., use these lines in the place where you commented out your FPS camera in the player_move:

Action player_move

{

 ….

 ….// animations up here
}

vec_set(temp,my.x); // copies my loc to temp

vec_sub(temp,camera.x); // subtracts camera loc from temp to calculate a direction vector from camera to my

vec_to_angle(camera.pan,temp); // rotates pan and tilt of the camera to the temp direction vector

// camera updates

/*

Vec_set (Camera.x,player.x);

camera.z += 27;

camera.pan = player.pan;

temptilt += (key_pgup - key_pgdn)*4*time;

If (key_home) { temptilt = 0; }

if (temptilt > 75)

{

 temptilt = 75;

}

else

{

 if (temptilt < -75)

 {

 temptilt = -75;

 }

}

camera.tilt = 0 + temptilt;

*/

 wait(1);

}

}

Now build a couple ramps with drop offs to test falling.

[image: image37.png]
[image: image38.png]
First you can see we keep moving forward when we fall but still hold the movement keys, (including animations) we need to halt that while we fall.

We move our keyboard movement vector calculations to after our trace and if statements for falling, then we do a conditional check to see if we are falling and if not then we can move. We also ramp down our movement current momentum vs. stopping it dead in its tracks:

else

{

if (my.fall_distance < 64 && my.falling == 0) // keep us on the floor normally

{

move_vec.z = -my.fall_distance*time;

}

}

// add all this in after the above lines

if (!my.falling) // if falling = 0 then !falling is = 1, or true that I’m not falling
{

move_vec.x = (key_force.y)*4 *time; // moved these 2 lines from before my trace

move_vec.y = (key_comma - key_period) *3 *time;

}

Now my player won’t animate or move forwards/backwards when holding down the arrow keys while the entity falls. Now for the fun part (animating the fall. It has to cycle from:

1. the CURRENT frame,

2. to the fall frame,

3. to the land frame then

4. to stand frame.

And in such a way that the land frame won’t happen until the player is near a surface to land on

We first place all our original animations in an else { … }

else

{

If (move_vec[0] == 0 && move_vec[1] == 0)

{

…

…

…

ent_animate(player,"walk",walk_percent,ANM_CYCLE);

}

}

}

Now before that else we create a new IF to handle our falling:

if (my.falling == 1)

{

}

We have a minimum distance to fall so anything over that we want the entity to play the fall frame. The frame is aprox 50% into the jump animation. Since its not a repeated cycled animation like walk or run we want to use the ANM_ADD mode to ent_animate instead:

if (my.falling == 1)

{

if (my.fall_distance > 32)

{

ent_animate(me,"jump",60,anm_add);

}

}

So this means UNDER 32 quants high we need to run the remaining falling animation fall, land, stand AND make sure the entity doesn’t fall under the surface it lands on while it runs animation.

We want to run from the falling 50% frame to aprox 70% for the land then back to 100%/0% for the stand frame of the jump animation. We make a new % variable for animation like we did for walk and run and we give it a starting value of 60.

Var land_percent = 60;

We know % modulo allows us to cycle from 0 – 100 and repeats, so we can do a % on land_percent and when it reaches 0 (standing frame) we end our animation and our entity should be on the ground, no longer falling.

if (my.falling == 1)

{

if (my.fall_distance > 32)

{

ent_animate(me,"jump",60,anm_add);

}

else

{

if (int(land_percent) !=0) // not done with animation yet

{

land_percent = (land_percent +8*time)%100;

ent_animate(me,"jump",land_percent,ANM_ADD); // animate landing

}

else // landing animation done

{

my.falling = 0; // we are no longer falling

land_percent = 60; // reset land_percent for the next time we might fall

}

}

}

we also need to make sure while animating the landing the entity doesn’t fall through the floor. Because of our falling flag, the normal move_vec.z to keep us on the floor isn’t running so we need a check WHILE we animate landing.:

if (int(land_percent) !=0)

{

land_percent = (land_percent +8*time)%100;

ent_animate(me,"jump",land_percent,ANM_ADD);

if (my.fall_distance < 0) // have I fallen under a surface?

{

move_vec.z = -my.fall_distance*time;
// if so, move me back up

}

}

One last thing, we also need to move our ent_move instruction. We ALWAYS want to do our ent_move c_move instructions AFTER we do any movement vector adjustments. Where it sits now in our script (before animation handling) our handling of falling in the falling animation won’t take place until NEXT frame. It will result in cbabe walking off a ledge, falls and when she hits the ground she will actually bounce like a rubber ball.

Go ahead and save the script and try it just to see it (.

Now move the move_mode and ent_move lines to between the animation lines and the camera instructions (remember we want the camera to be updated AFTER movement, and movement vector calculations BEFORE movement)

The number for the speed of my falling animation I just had to visually watch and adjust.

Best trick is get the cbabe model up on a tall ledge.

Hit TAB key, you get the flashing command prompt

Type in:

Time_factor = .05; and hit enter key this slows game down as mentioned before

Now step off the ledge you can see in slow motion the animation and when each frame is hit.

[image: image39.png]
We can fall (That’s the hard part, finishing up our jumping half is easier.

First build a couple more blocks in our test level, some a bit smaller than 32 quants tall, and a couple a little over 64 quants tall. Build and run make sure you cannot step up on them with normal movement, and the taller of the blocks is about as tall as cbabe.

We are going to set a limit on how high she can jump: standing or walking she can jump 32 quants, (aprox waist high for her which is about normal for most people) and 64 quants if she is running (better than normal just about her height , after all she is a hero and makes the math easy to calculate for us).

So:

1. is she jumping

2. how high?

3. Ignore tracing to pull us down to the floor while jumping up

4. Ignore any keyboard movement input while jumping

5. Ignore any extra presses to jump (we want to jump here, not fly ()

6. Max jump speed

7. Decelerate upwards movement until reaching max jump height

8. Set jumping flag to not jumping so now she can fall

Since our max falling speed is 20*time we will start our jump at that speed and decelerate like we did with accelerating with falling (1*time).

We need a key press to kick off our jumping, lets use ‘X’ its used by many FPS games as default.

We need a skill flag for jump skill32 sounds good right with our falling. And we need a skill to keep track of how high we have jumped. We cannot use our traced fall_distance to keep track of how high we have jumped, because if we jump from the floor to over one of our boxes the fall_distance won’t stay accurate for total height jumped.

DEFINE jump,skill32; // 0 not jumping, 1 jumping, 2 run jumping

DEFINE jump_hight,skill33;

So now we can set up our jumping, this will take additional code and modifying existing lines

First I add in my check to see if the player hits X to jump, I place this RIGHT before my check for me move_vec.x and .y lines

// check if player pressed jump X and isn't already jumping or falling

if (key_x)

{

if(my.jumping == 0 && my.falling == 0 && my.fall_distance <1)

{

my.jumping = 1 + key_shift; // if holding shift key when hit jump means we were running

move_vec.z = 20*time; // starting jump speed velocity

}

}

// if not jumping or falling we can move

if (!my.falling && my.jumping ==0) // if falling = 0 then !falling is = 1, or true that I’m not falling

{

move_vec.x = (key_force.y)*4 *time;

move_vec.y = (key_comma - key_period) *3 *time;

}

I added in the && my.jumping == 0 check for my movement vector check for the same reasons we don’t want to move forwards/backwards/strafe while jumping or falling. Otherwise this should be simple to understand to you now. I check if pressed X. if so I check to make sure player isn’t already jumping, or falling, or above the floor in transition between jump and fall. If I can jump I flag the jump 1 for walking 2 if running, and I set the starting +Z speed to 20*time

Now I need a handling for my jump flag for Z movement. I place this right after my trace lines but before my first check for falling.

// check if jumping

if (my.jumping !=0)

{

if ((my.jump_hight > 32 && my.jumping == 1) || (my.jumping == 2 && my.jump_hight >64))

{

my.jumping = 0;

move_vec.z = 0;

my.jump_hight = 0;

}

else

{

}

 }

// check if falling

If (my.fall_distance >64 && sign(my.fall_distance) != -1 && my.jumping ==0)

{

}

else

{

if (my.fall_distance < 64 && my.falling == 0 && my.jumping ==0) // keep us on the floor

Here I add the check in my falling routine to make sure I’m not jumping

Then above it I set my check to see if I am flagged to jump

If so then I check if I hit my max hights for jumping:

(my.jump_hight > 32 && my.jumping == 1) // walking/standing jump
|| // or
(my.jumping == 2 && my.jump_hight >64) // running jump

if I have, I rest all my jump flags and variables to be ready for another jump

Now we need to handle decelerating our +Z jump velocity AND calculate how high we have jumped at the same time. We plug this into out ELSE for this handling

else

{

if (move_vec.z > 1*time) // long as our +Z velocity is over 1*time

{

move_vec.z -= .5*time; // reduce the +Z velocity

my.jump_hight += move_vec.z; // add the distance the Z velocity covered to update how high we jumped

}

else

{

move_vec.z = 1*time; // still jumping but at its peak movement up

my.jump_hight += move_vec.z;
 // same as above

}

}

The key here is 1, we want to be sure we are moving always at a +Z velocity but decelerate it down to a minimum and 2. That the distance covered by move_vec.z is added to our jump_hight until we reach our max jump hights of 32 and 64 quants. So:

If the +Z velocity is greater than 1*time, reduce it by .5*time and then add the distance the new move_vec.z will cover when the ent_move instruction is hit

If move_vec.z is less than 1*time, we stabilize the +Z velocity at 1*time and keep adding move_vec.z distance to my.jump_hight until we reach our max jump hights.

Now we just need to animate the jump. First we need another % for our jump_percent

Var jump_percent = 0;

Now, we take all our previous animation handling and put them inside an else { }

else //other animations
{

if (my.falling == 1) // animate falling

{

}

Then we create an if right before our new else

// animate jump

if (my.jumping !=0)

{

}

else //other animations

{

if (my.falling == 1) // animate falling

{

Looking at our cbabe models jump animation again we want the first 3 frames for our jump so aprox 50% of her jump frames. But we don’t want to cycle through them, just play them once.

// animate jump

if (my.jumping !=0)

{

if (jump_percent < 50)

{

ent_animate(me,"jump",jump_percent,ANM_ADD);

jump_percent = (jump_percent +8*time)%60; // give some added room here so the jump_percent can get over 50 for our if check

}

}

and we need to reset the jump_percent after completing a jump so we do that in our handling of when the player has reached jump_hight

if ((my.jump_hight > 32 && my.jumping == 1) || (my.jumping == 2 && my.jump_hight >64))

{

my.jumping = 0;

move_vec.z = 0;

my.jump_hight = 0;

jump_percent = 0;

}

Save and run. Should look pretty good now for jumping and falling.

The actual numbers for like animation speed (8*time) or how fast to ramp up/down a number takes some time to get it right and usually only accomplished by visually checking. This is why we build it in smaller pieces. In order to check each small part vs. trying to put it all together and get some really bad results because so many possibilities could be the cause. By limiting our work to smaller parts (fall and then jump) we can concentrate on the specifics of each. Then when its all working, we can tweak and refine it.

Copy the script back to TechnoLabs folder. Reset the level_load and camera lines in the script.

Then go ahead and place some map entity boxes in TLlevel2 and give it a try out.

REMEMBER: all the scripting so far is NOT set in stone work, it is ALWAYS a work in progress and we will refine them as we go along. If fact NO script is as-is finished. That’s the key to programming, is always a way to make something work better, or needs to be adapted for some needed not thought of before hand. Case in point, there are some flaws in our fall and jump handling we haven’t accounted for yet.

Like jumping in areas that don’t have enough clearance room above us for max height:

[image: image40.png]
or the jump seeming to get stuck when jumping into map entities (like the stairs).

As you can see, our player action is getting a bit lengthy and a little over cumbersome. In the next part of this tutorial we will be re organizing our game.wdl script along with modularizing our player action script so that parts of it can be used by more than just our player entity.

For now, finish off building your TLlevel2 with more detailed build, add map entities to decorations etc. We will handle level change after TLlevel 3 is built For story line we could have an NPC (no player character) entity or 2 here that the player would talk to get information about our Dr. John, what he does here and why he may have disappeared plus we can be told Dr.Johns lab is on the 3rd floor.

