3D GameStudio Tutorial

A Newbies Guide to Multiplayer

For A6 Version 6.22

By

Giorgi3

[image: image1.png]
The Cbabe Twins exploring the TechDemo Multiplayer Together

Chapter 1 - Introduction

Hello and welcome to my first tutorial on developing multiplayer games with 3D Game Studio. My name is George Schneider (aka Giorgi3).

Multiplayer games have become very popular in the past few years. As the internet boomed, so did online gaming. With the advent of Everquest and other massive multiplayer online games (MMOG), there has been a desire from the A6 community to develop multiplayer games using 3DGS that works well over the Internet. Earlier this year Conitec added a multiplayer forum to help the community move forward with multiplayer game development. Even more recently Conitec made a number of changes to the A6 engine to improve multiplayer game play over the internet and then opened up the beta tester program to a number of people that were interested in developing MP Games. And just recently a public beta for version 6.3 was released that has some of these changes available.
These engine improvements should dramatically improve the overall game play on the internet. However the real answer to getting a good MP game developed using 3DGS isn’t going to come from Conitec. The solution has to come from us, the game development community. The secret to developing a good MP game isn’t just in the engine itself. The secret is in knowing how the internet works, and how to get around some of its issues. The secret is for us to write great C-scripts that drive the engine. The secret is for us to design a game up front that will work well over the Internet.

A lot of what this tutorial is about comes from the Multiplayer Forum itself. Forum members like Locoweed, LoneWolf, FastLane69 and JCL himself have been contributing a lot of great information.
What I hope to do is write a tutorial to pass on some of the knowledge and experience I’ve gathered so that you can create your own multiplayer games using 3DGS.
What I hope you will do in return is pass on any ‘secrets’ that you discover along the way to the community, so that we can all benefit.

What to expect from this Tutorial

As the title suggests, I am targeting this tutorial towards people who are ‘Newbies” to multiplayer game development on 3DGS.
I do expect that you already know how to run WED, MED, and SED and that you are somewhat familiar with C-Script. If you are a “Total Newbie” to 3DGS, I would recommend that you work your way through the tutorial “Getting Started with 3D GameStudio” and possibly even “Teach yourself game programming in 6 Days”. These two introductory tutorials are in the compiled HTML manual for 3DGS available at http://www.conitecserver.com/down/3dgs_manual.zip.

The goals for this tutorial are as follows:

1. Get an MP game up and running with A6 as quickly as possible.

2. Show you some of the commands you need for MP development

3. Show you some of the issues you will have to deal with in MP development
4. Have a little fun doing it.
So what are we going to do in this tutorial? Well, I thought it might be fun to convert an existing game level into a multiplayer. Since I am not much of a level maker/modeler, it seemed to me that we could use something that is already readily available to you. Therefore I thought we might convert the new TechDemo level distributed with the A6 engine into a multiplayer.

I hope you don’t expect to do a lot of coding in this tutorial. This is a tutorial for MP beginners. Its purpose is to give you some background in MP game development and the issues therein. We are going to use as much of the techdemo’s C-Script as we can. This includes using the template scripts, which already have some multiplayer functionality built in.
Later in the lesson, we will be examining the template scripts a little to see how they handle some of these multiplayer issues, and then even explore some of the issues that aren’t being handled so well.
Eventually, if you get hooked on developing MP games, you will probably want to write an MP game completely from scratch (i.e. no templates). If that’s the case, Locoweed has been developing a tutorial on creating a bare bones multiplayer from scratch. You can find it at: http://www.locoweed.v-worlds.net/Multiplayer.htm. Although at the time of this writing, his tutorial is not complete, he does have some good sample code to get you going.
I am hoping that my tutorial will give you the background needed to really understand what Locoweed has developed. And more importantly, I hope it will give you the interest to make your own MP game in 3DGS.
What you will need to complete this tutorial
1. The Commercial or Professional addition of A6 – Version 6.22
2. This tutorial file - NewbMP.zip

3. Two computers with networking capabilities. You can use a Home Network or direct access to the Internet via either broadband or dialup. Preferably you should have both LAN and Internet access.
Chapter 2 – Terminology
General Networking Terminology
If you already understand the concept of a Client/Server Software Architecture, and are familiar with the terms LAN, WAN, Client, and Server you can skip down to the section labeled: Tutorial Specific Definitions
In order to discuss developing a multiplayer game, we obviously will be discussing networking to some degree. Just so we are on the same page, I am going to define a few networking terms here.
The first network terms we need to talk about is LAN and WAN.

1. LAN - Local Area Network

If you have a Home Network it is a LAN. The network in your office is probably a LAN. Typically LANs cover a small geographical area, such as an office building or your home. In some larger companies, each floor of the building might be a separate LAN.

If your computer is hooked to a LAN, it probably has a Network Interface Card (NIC) such as 10/100 BaseT card.
2. WAN - Wide Area Network

A wide area network is normally consists of a number of different hardware devices such as Routers and Switches that typically connect several LANs together. The Internet is the best example of a WAN. Many large companies also have their own WAN.
Your computer might be connected to the internet in several ways. The most common way is still through a dialup modem and a phone line. In the past few years broadband connections such as Cable Modem or DSL have become more commonly available, and less expensive and therefore more popular. Broadband devices typically are connected to your computer via a NIC card, or through a USB port.
If you are like me, you might even have a Router/Switch in your home that allows you to have a Home Network (LAN) and an internet connection (WAN) at the same time. This device might even act as a firewall for your home network and computers.

The next thing we should discuss is the concept of Clients and Servers, from both the hardware and the software perspective.
1. Server

 In its most basic form, a server is a computer system that provides services to ‘other’ computers. Some common examples are Print Servers, File Servers, and of course our favorite Game Servers.
2. Client
These ‘other’ computers that are being serviced by a server are called Clients. An example of a client would be a PC in your office that sends it’s printouts to a Print Server for printing.

3. Client/Server Architecture
In the category of software design, we have what is referred to as a Client/Server Architecture. This is typically a software application that spits up some of the work it has to do between multiple computers. That is to say, some of the applications functionality runs on a Server computer system and other parts of the applications functionality runs on Client computer systems.

The multiplayer engine built into A6 is based on a Client/Server Architecture. This is important to know and understand. We will be going into how the A6 engine implements its Client/Server Architecture a little later.
Tutorial Specific Definitions
Because we have to deal with Clients and Servers both from the hardware perspective and from the software perspective, I will be using the following terms to help distinguish them from each other.
1. Server
In this tutorial the word server will refer to the PC that is running a Server Session of your game. This should be the PC on which you normally develop 3DGS applications. It should have WED, MED, and SED installed on it. It should also be the most powerful computer that you have, and it must have access to a Home Network (LAN) or the Internet (WAN) or both.
2. Client
In this tutorial the word Client will be the ‘other’ PC you have available that will be running the Client Session of your game. It also should have LAN or WAN access.
3. Server Session

This is a part of the Client Server Architecture as implemented in A6. A Server Session refers to the portion of our game’s software that runs on the Server. The Server Sessions main job is to coordinate the ‘game world’ for all of the Client PCs. The server session is started when the –sv option is included in the command line.
4. Client Session
This is the other half of the Client Server Architecture as implemented in A6. The Client Session refers to the portion of our game that runs on the Client PC. The Client Session’s main functions are to gather the players inputs (i.e.: keystrokes and mouse/joystick movement) and to display the ‘game world’ to the player. The Client Session is started with the –cl command line option.
Chapter 3 – Getting another player into Techdemo

[image: image2.png]
A Twins Reunion Party!
Since multiplayer games are all about, duh, multiple players in one game, let’s start with that. We will use the existing techdemo.wdl file found in your work folder, and simply modify it to create Client Sessions thus adding other players. So let’s get started. It is way easier than you might think.

Before you make any changes make a copy of the techdemo.wdl file, and call the copy savedTechdemo.wdl. That way if you mess up to much, you can always start over.

Now, start up SED and open the techdemo.wdl file. Around line 75 you should see this code:
///

// define a splash screen with the required engine logo

bmap splashmap = <logolite.pcx>; // one of the default engine logos in templates

panel splashscreen { bmap = splashmap; }
Add the following new code (highlighted in red) immediately after the panel splashscreen line.
//

// function prototypes

function player_client();

string cbabe_mdl = <cbabe.mdl>;

We are adding a function prototype for later use and defining the cbabe_mdl string so that we can use it to create a model dynamically in the game.

Next locate the end of the main () function at around line 91. At the bottom of this function at around line 116 you should see the following code:

env_sky_toggle_off();
// turn off the sky

message_startup();
// show startup string message
 }
Add the following code immediately after the message_startup () function and before the main () functions ending bracket }.
// Create the Cbabe entity on for each Client Session Joining our game world
if (connection & CONNECT_CLIENT)

{

// wait until the level is loaded, and the connection is established
while (connection == 0) { wait(1); }

// start a function to gather player inputs and send them to the server

client_move();

// create the babe entity at a random place somewhere near the start

randomize();

temp.X = -1185 + random(100);

temp.Y = 1 + random(100);

temp.Z = -335;

player = ent_create(cbabe_mdl,temp,player_client);

// the cbabe is created, and its action is running on the server.

// Therefore we have to initialize her on the client separately -

// the following flags are required for the camera

player._MOVEMODE = _MODE_WALKING;

player.__BOB = ON;

player._BANKING = 0;

}

This small piece of code adds a cbabe.mdl model for each new Client Session that joins your game world.

Next we will add another small piece of code to the main() function. It displays the servers IP address to make it easier for you to start up client sessions over the internet.
// display the server's IP address so you clients can know where to connect to
if (connection & CONNECT_SERVER)

{

str_cpy(temp_str,server_name);

str_cat(temp_str," ");

str_cat(temp_str,server_IP);

scroll_message(temp_str);

}
Later I will go over all of this code in more detail in Chapter 7, but for now you can just cut and paste it into your techdemo.wdl file. However, before we move on, I would like to go over a particularly important piece of this code now.
The connection variable
if (connection & CONNECT_CLIENT)

…

if (connection & CONNECT_SERVER)

…

The connection variable is a predefined variable that is automatically set to 0 when A6 starts up. It changes to the following values depending on how the engine was started.

0 - The engine was not started in any multiplayer mode

1 - The engine was started with –sv (Server Session)

2 - The engine was started with – cl (Client Session)

3 - The engine was started with –sv –cl (Server/Client Session)

Huh? What’s a Server/Client Session you ask? Well it’s a special form of a session that you can run on your Server. It allows A6 to act as a server to all of the other Client Sessions, and at the same time allows a player (you) to use the Server as a Client as well! Basically what we do is start the A6 engine in both Server Mode and Client Mode. Normally you would use the –sv option when you have an abundance of PC’s and want one of them to be dedicated to running your Server. In this tutorial I will refer to both as the Server Session. Use whichever is appropriate for you. If you are like me, you will probably have only two computers to use, so when you see Server Session, use the –sv –cl command line option.

So, what do we do with the connection variable? Well we use it in our C-Script to examine how the player started the A6 Engine. Cool! Now we can have our script do different things depending on how it was started! Let’s examine how we used it in the code we added. Here is the first time we see it:

if (connection & CONNECT_CLIENT)

What is this statement doing? It’s testing to see if the engine was started with a –cl command line option in it. Therefore both of the following run line commands will cause this if statement to evaluate as true.
\techdemo.cd\techdemo.exe –cl

\techdemo.cd\techdemo.exe –sv -cl

And here is the second time it shows up:
if (connection & CONNECT_SERVER)

This statement is testing to see if the –sv command line option is in the command line. Therefore both of the following run command lines will cause this if statement to evaluate as true.
\techdemo.cd\techdemo.exe –sv

\techdemo.cd\techdemo.exe –sv -cl

Make sense? Good. Enough of the lectures for now, let’s get back to our MP coding.

ACTION My_player for cbabe.mdl model
If you were to start up WED and look at the properties of the cbabe.mdl in the techdemo level, you will see that the behavior assigned to the cbabe.mdl model is called my_player. That means that there is an action defined somewhere in the techdemo.wdl or the templates called my_player. So, in SED, see if you can find it. You should find it somewhere around line 170. It looks like this:

// Desc: user controlled player

ACTION
my_player

{

my.fat = off;

my.narrow = on;

my.trigger_range = 24;

my._movemode = _mode_walking;

my._force = 0.75;

my._banking = -0.1;

my.__strafe = on;

my.__bob = on;

my.__trigger = on;

my.__fall = on;

my._health = 100;

ifdef std;

my.shadow = off;

drop_shadow();

ifelse;
// not std

ifdef
extra;

my.shadow = off;

drop_shadow();

ifelse;
// not std, not extra

my.shadow = on; // shadow on comm or above

endif;

endif;

my.scale_x = 1.2;

my.scale_y = 1.2;

my.scale_z = 1.2;

player_walk();

}

Well, there really isn’t much to this piece of code. You can see that it sets the value for a bunch of skills, drops a shadow for our babe model, does a little scaling, and then calls the action player_walk() defined in the template scripts.

Renaming my_player to player_client
Our next step is to change this action to a function, and rename it to player_client. To do you simply change this:

ACTION
my_player

To this:

FUNCTION
player_client

Why did we do this? Simple, when they built the techdemo level, they put in a cbabe.mdl via WED. Now our code that we added is going to add a cbabe.mdl via the create command. Therefore we need to remove the WED defined model when we start the game in multiplayer mode. In order to do this we are going to write a front end for the my_player behavior that removes the cbabe.mdl for us.
Rewriting my_player to remove the cbabe.mdl level model
Next, we need to add the code that will check to see if we are started in any of the multiplayer modes, and get rid of the cbabe.mdl model. Place this code immediately in front of our newly renamed function player_client().
// remove the WED placed cbabe.mdl entity in an MP environment because we are

// creating a cbabe model in main for all Client Sessions.
action my_player

{

 if (connection) // Is the game started in a multiplayer mode?

 {remove(me);}
 // True – Get rid of the levels cbabe.mdl
 else //
 {player_client ();} // False – leave the cbabe.mdl and execute its function
}

That was simple enough. Since the WED cbabe.mdl was assigned the action my_player, this action will start up when the game starts up. The connection variable will be true (greater than zero) if we started the game with –sv or –cl in the command line, and the cbabe.mdl associated with the my_player behavior will be removed. If the connection variable is false (zero) no MP command line options were used, and we will simply call the original action code which we renamed to player_client.
So what’s next? Nothing! We now have a multiplayer game!
Is it really that simple? Yes and No! Yes, we can now run our level and have two cbabe’s in our game. And no, some of the things in the level may not work exactly like they did in single player mode. So why don’t we move on and get our new techdemo MP up and running.
Chapter 4 – Running our techdemo MP
[image: image3.png]
Our girls watching the Wizard show off
Well do you really believe this is all it took to make the tech demo a multiplayer? If you do, then let’s run it and see. Actually if you don’t we’re going to try and run it here anyway.
Preparing the Client PC to run techdemo MP

The first thing we are going to need to do is get a copy of our new techdemo MP game over to the Client PC. The 3DGS license agreement states:

Limits of Use. The Software may be used only by you. You may install and use one copy of the Software on a single computer. You may also store or install a copy of the Software on a storage device, such as a network server, used only to install or run the Software on your other computers over an internal network; however, you must acquire and dedicate either a distinct license or a team license for each developer using the Software from the storage device. Any given license for the Software may not be shared or used concurrently or otherwise on different computers or by different developers in a given organization.

So what does this mean? Beats me! To be on the safe side, I know that it’s ok to create a published version and move that to my Client PC system. So that’s what we are going to do. From WED, open the techdemo.wmp file and select the file -> publish option as shown below.
[image: image4.png]
The publish option will create a folder called techdemo.cd. I’m not sure why, but the witch.mdl didn’t get copied into my techdemo.cd If yours didn’t either, you can simply copy the witch.mdl file from the work folder to the newly created techdemo.cd folder.

Now copy this folder and its contents over to your Client PC. I placed mine in c:\techdemo.cd\.
While you are at it, make a copy of the techdemo.cd on the Server PC in c:\techdemo.cd\ directory as well.

The Command Line Options

A6 has several command line options that deal with starting multiplayer games. Here are three that you need to know about.
-sv - This is a command line option that tells A6 to start a new multiplayer session in server mode. This command line option is what starts a Server Session.
-cl - This is a command line option that tells A6 to start a new multiplayer session in client mode. It causes A6 to look for and join a multiplayer session already in progress. This command line option is what starts a Client Session. Using the –sv –cl commands together is how we can start a Client Session and a Server Session simultaneously on our Server PC.
-ip The –IP command line option allows you to specify the servers domain name or IP address. This command is only necessary when we are starting a Client Session over a WAN.
In order to get an MP game running, you must start up the Server Session first.
Running techdemo MP as a Server Session
To get to the “Run” window, click “Start” and then “Run” from the Windows TaskBar on your Server PC.

[image: image5.png]
This is how we will be starting the Server Session on our Server. If you have more than two computers and want to start one as a dedicated Server Session, simply remove the –cl from the command line.
Running techdemo MP Client Session on a LAN
To get to the “Run” window, click “Start” and then “Run” from the Windows TaskBar on your Client PC.

[image: image6.png]
If our Server Session is running on a LAN, and our Client Session will be started on the same LAN, then you can just add the –cl option to the run command as shown. A6 has a built in mechanism that will search the LAN for a matching Server/Session.

Running techdemo MP Client Session on a WAN

If the Server Session and the Client Session are on different LANs (i.e. the internet) then you must specify the IP Address of the Server PC in the run command.
[image: image7.png]
If you don’t know what the IP address of your server is, there are several ways to find it. The easiest is to simply start up the Server Session and look at the screen. We have already added a small piece of code that displays the IP address of your server on the left side of the Server Session’s screen. Then simply substitute the IP address displayed on your Server Session for the ‘fake’ IP shown above.
Alright then, have you got it up and running? Great! Let’s go walk through the level together.
Chapter 5 – A walkthrough from a LAN perspective
[image: image8.png]
Riding the Storm Out Together

Ok, first off, let me tell you that this walk through is on a LAN. If you don’t have a LAN to test with and are using the internet, your mileage may vary. This is because there are a couple of WAN issues to deal with that a LAN hides from us. Specifically they are latency and bandwidth. We’ll talk more about this later. For now, lets just see what the techdemo looks like in MP mode on a LAN.
Secondly, don’t go running off by yourself just yet. Stay with the tutorial, there will be plenty of time to explore on your own later.

And finally, if things don’t seem to work exactly right as we go through it, don’t worry about it. This session is mainly to let you see that multiplayer is possible, and to show you some of the concepts that you need to understand when developing a multiplayer. I’ll try to explain a couple of the problems you might see as we go, but we won’t be changing the template scripts to fix them, as this is way beyond the scope of a beginners tutorial.
[image: image9.png]
The twins meet for the first time!

If everything is working correctly from chapter 4 you should now have two babes in your game world. Twins! Cool! If you didn’t get them to connect, then refer to the troubleshooting section in the appendix under the heading I CAN”T CONNECT ISSUES.
Start off by turning your “Server Babe” around by using the left and right arrow keys on your Server PC. Do you see her twin sister, “Client Babe”. Now while still watching the server’s screen, turn your Client Babe (using the arrow keys on the Client PC) to face your Server Babe. Did she turn smoothly? Ok, great! Now while watching from the client’s screen, try turning the Server Babe. Was that smooth as well? If it wasn’t refer to the troubleshooting section of the appendix for possible solutions to JERKY CLIENT ISSUES.
Static Light Room

Ok, now that the sisters have finally met, let’s go for a walk. Press F7 to get a chase camera view on both the client and the server PC. Rotate the client until you see the door to Static Light Room. Now using the forward arrow key, go ahead and enter the room with your Client Babe. Once your client babe is all the way inside, switch to the server PC and try moving the server babe SLOWLY towards the same door.
[image: image10.png]
The twins about to be separated again

What’s this? The door is closing and won’t let us in! Go back to the Client’s Babe and try to move her out of the room. Damn, the door won’t open up from this side. What went wrong?
Simple, this is a very basic MP design issue. The doors trigger is just outside the door. Step on it once (Client Babe) and the door opens. Step on it again (Server Babe) and the door closes. Now that we have two players, we are going to need an MP friendlier scheme, like a trigger on both sides. Point # 1, you must think MP when you design your game. Retrofitting MP afterwards can be real messy.
So, how do we get the twins back together? Well, back up Server Babe a little ways and then go towards the door again. You should trigger the open cycle again. Go ahead and explore the room with both babes. Do you see any other issues here? It looks pretty nice to me from both girls perspective.
Water Room
The next room down the hall is the Water Room. Go ahead and go on inside it. But this time have the girls hold hands as they go into the room. Ok, we don’t really have a way to make them hold hands (it might be cool to code up though(), so let them walk side by side together towards the door. Hopefully this door’s trigger won’t go off twice and they both can get into the room.

[image: image11.png]
Then next Olympic Event, Synchronized Floating

Try swimming with both girls. Watch the twins move about from each others perspective. Are the animations smooth? Do the waterfalls at the far end look ok to you? I don’t see any real issues (other than getting in and out), so when you’re tired of swimming, we will move on.
Shooting Range
All right, now let’s move on down the hall a bit to the Shooting Range room.

Did you make it in the room ok? Cool!
Right off the bat you should see a problem. The Server Babe has programmatically switched to 1st Person view, but the Client Babe is still in 3rd person view. I wonder what is causing this problem.
You probably also noticed that this room was not designed for a 3rd person view. The guns aren’t scaled well to the player, and there is no animation of the player holding and firing the gun. More design issues.
Oh, yes, do you see weapons in the room at all?
[image: image12.png]
Where did the weapons go?

Sometimes when you enter the room the weapons aren’t there. If this happens, try going out and coming back in with the Server’s Babe only. Did the weapons appear? So what do you think is going on here? I’ll give you a hint. It’s a design issue similar to the problems with two players entering the door.

 If there are weapons in the room, go ahead and try them out. Have your Server Babe pick up one of the weapons and shoot at the targets. Loads of fun! Ok, now let’s try your Client Babe. …

[image: image13.png]
Client Babe passes right through the weapons
Crud, the Client’s Babe passes right through them. How could that be? Any ideas? Well, it drove me crazy for awhile, but I finally found the problem. It’s buried deep within the template scripts. We’ll take a look this in chapter 7 when we go through the code in a little more detail.
But for now, why don’t we try picking it up manually. The way the weapons.wdl template scripts are written, pressing the space bar should cause us to pick up the gun as well. Get close to a weapon and press the space bar.
What’s this, the weapon disappeared, but your Client Babe doesn’t seem to have picked it up. Where did it go?

Well turn around look at the server babe, you’ll probably find the gun with her. So why did the client babe select the gun only to have it end up in the server babe’s hands? Alright, I’ll give you a clue. Both of these problems have to do with where your C-Script actually runs (remember the client/server architecture thing I mentioned earlier?). We will discuss this in detail in chapter 6.
Weather Zone
All right, let’s move on. Going on down the hall again, we get to the doors for the weather room. Go ahead and get the girls inside the best you can.

[image: image14.png]
Server Babe tries to warn her sister about the Tornado – Can’t she see it?
Hey, it’s raining. Wait a bit and we see thunder and lightning. And here comes the tornado… at least on the Server Session. I can hear the noise on the Clients Session, but I don’t see anything. Hum, another missing entity, like the disappearing weapon?
Alright then, one room to go. Let’s check it out.
Dynamic Lighting Room
[image: image15.png]
Our Girls checking out the light show
Go ahead and look around a little. This is my favorite room of the techdemo. How’s the wizard’s tricks working out? They look pretty cool to me. And what about the two beach babes playing with the ball. Wow! Again, I don’t see any problems here. How about you? Try moving about in this room. Do the girls move about smoothly, even from the Client’s screen? Even if everything is as smooth as silk, this room really has some issues that need to be addressed. The LAN may be hiding them, but on the internet many things may change, especially this room. Well discuss the issues with the internet (WAN) in Chapter 8.
Well that’s it for the guided tour on a LAN. I hope you enjoyed it. More importantly I hope this has wetted your appetite to learn more about multiplayer. Before we get into looking at the code in any detail I think it’s time to discuss this A6 Client/Server Architecture thingies a little bit.
Chapter 6 – Client/Server Architecture
This is probably the most important chapter in this tutorial. If you don’t understand this, you are really going to have some trouble developing MP games. As I mentioned early on, A6 uses a Client/Server Architecture to implement its MP engine.
So what does this mean? In the generic sense a Client/Server architecture is method of developing a software application in which the software is divided into pieces, so that the work can be spread over several computers on the network.

What does that mean to us as programmers? Well, first of all we have to be aware of where our code is actually running. You might ask, well doesn’t our C-script simply run on the computer that we are running the engine on? And the answer is no, it doesn’t.
Alright, actually it does. And it doesn’t. Huh?

First of all, the C-Script in the .wdl files should be identical on both computers. In fact if it’s not, you will in all likelihood run into some really strange problems. But the trick is, the A6 engine doesn’t actually execute all of the C-Script on each system. By design, it divides pieces of the code up, and has some of it run on the client PC and other pieces on the server PC.

I can’t stress how important it is to understand this. So which pieces are divided where? Well, the answer is…

Entities created on Clients, have their Actions and Functions executed on the Server! What’s that you say? Why? How? Huh?

Ok, fire up SED and let’s look at the code we added earlier. For now, we will be talking about the Client Session running on the Client PC (using the -cl command line option only).
In the main() function at around line 170 you should find the following C-Script:

player = ent_create(cbabe_mdl,temp,player_client);

// the babe is created, and her action is running on the server.

// Therefore we have to initialize him on the client separately -

// the following flags are required for the camera

player._MOVEMODE = _MODE_WALKING;

player.__BOB = ON;

player._BANKING = 0;

sleep (1);
Pay particular attention to the first comment line:
// the babe is created, and her action is running on the server.

When we create an entity on a Client using the ent_create command, its action runs on the Server, not on the Client itself. Now if you look up ent_create you will see that the third parameter is the function (or action) that we want to associate with our new entity. So in our case the entity cbabe_mdl is being controlled by the function player_client. But player_client is actually be running on the server, even though we are executed the ent_create on the client. Go on down to around line 182. Here you should see the code for the player_client function:
// Desc: user controlled player

function player_client()

{

my.fat = off;

my.narrow = on;

my.trigger_range = 24;

my._movemode = _mode_walking;

my._force = 0.75;

my._banking = -0.1;

my.__strafe = on;

my.__bob = on;

my.__trigger = on;

my.__fall = on;

my._health = 100;

ifdef std;

my.shadow = off;

drop_shadow();

ifelse;
// not std

ifdef
extra;

my.shadow = off;

drop_shadow();

ifelse;
// not std, not extra

my.shadow = on; // shadow on comm or above

endif;

endif;

my.scale_x = 1.2;

my.scale_y = 1.2;

my.scale_z = 1.2;

player_walk();

}
Notice that player_walk is called from player_client. Guess where player_walk is running. Yup, the server as well.
[image: image16.png]
Ent_Create executes on a Client PC -> player_client executes on Server

Get the picture? Ok back to your questions. Why? How? Huh?
Why would we do this? Well think about it for a minute. Let’s say we have 10 clients all joined to our game and we came along and joined as the 11th client. When we create our babe entity on our Client PC, we also really need to create a babe entity on ALL 10 of the other Client PC’s. Otherwise we would be the only one who could see her!
And we said very early on, that the main function of the server is to control the game world for ALL of the Clients. Therefore, where better to have the function that controls the Babe entity than on the Server! Does this make sense to you now?
How does A6 do this? Well it does it via the magic of the network. Actually A6 has a defined protocol where it sends messages (packets) between the two computers. When you create an entity on a client, a message is sent to the server as to what entity you created and where you created it. The server then creates a duplicate entity in the server’s game world. That way when the Babe entity moves, the server can send packet messages to all of the clients letting them all know the Babe is moving.
HUH? So how can the Babe entity be moving, when player_client is running on the server but we (the player) are using the keyboard on the client to move her? Good question. Look at the picture and follow along.
[image: image17.png]
Here is where the magic of the template scripts comes in. If you recall, we called a fuction called client_move at around line 149.

client_move();
// gather player inputs and send them to the server
Client_move runs on the Client PC side of our client/server architecture. It is a template script that gathers our player’s inputs and sends them (via network packets) to the Server PC. As you may recall, early on we said that one of the main functions of the Client, was to gather player’s inputs and send them to the server. Client_move is the piece of code that implements this.
So client move collects our keyboard/mouse/joystick movement and sends it to the server. The server then gets our packets indicating the Babe is moving, updates the movement on the server and then notifies ALL of the Clients that the Babe’s location has changed.
Now this seems to be rather complex when we could just move the Babe from the Client side directly. But then how would all of the other Clients know she moved? Get the idea? In chapter 7 we will look at the C-script that’s behind the magic of client_move function.

You might be asking, how do I know where a piece of code is running? The answer is fairly simple:

Rule # 1. By default, entities created with ent_create have their actions or functions run on the Server.
Rule # 2. Everything else by default runs on the same computer as the function that called it is running on.
Rule # 3. There are ways of getting around rules 1 and 2. Maybe we can discuss this a little bit later.
Here is an example of Rule # 1. We used ent_create to make our cbabe.mdl on the client, and gave it the function player_client. However player_client does not start running on the Client PC. Instead, a message is sent to the server to create a new cbabe.mdl there. When the server receives this message it makes a new cbabe.mdl on the server to match the one created on the client. It also then start’s the player_client function on the server. Now, a little ways down in player_clients code, it calls player_walk. Since player_client is only running on the server, the player_walk function called from it is only running on the server.

Here is an example of rule # 2. Any function called from main() will run on both the client(s) and the server. Since main runs on both, all functions called from main also run on the client(s) and the server. Therefore client_move runs on both the Client(s) and the Server, since it was called from main().
So, hopefully you got an understanding of Client/Server Architecture. If not, hang in there. Eventually the light bulb will come on and you will get it.
Chapter 7 – A look at the C-Script for MP
In this chapter we are going to examine the code that we added to the techdemo in some detail to try and get an understanding of how it turned the techdemo level into a multiplayer. Later, we will look at one of the issues we saw in our MP Techdemo, just to reinforce what we learned in chapter 6.
Adding our babes into the multiplayer techdemo level

Ok, so let’s go back to the basic code that we used to add the babe.mdl entity to the techdemo and look at it with an MP programmer’s point of view.

 Remember, rule # 2 is in effect for this entire piece of code. The code is being called from main, and therefore it will run on whichever PC started the session. For a Client Session we are running on the Client PC and are creating a Client Babe. For a Server Session, we are running on the Server PC and are creating a Server Babe.
First we test to see if we should be creating a new cbabe.mdl entity at all.

// Create the Cbabe entity on for each Client Session Joining our game world
if (connection & CONNECT_CLIENT)
We’ve already discussed this some, but in case you forgot, this IF statement checks to see if the connection variable is a 2 (started with a –cl) or a 3 (started with a –sv –cl). If you want to know the magic behind the “&” comparison, go to the appendix and read the section called ‘bitwise and’.

Now let’s look at the next line of code.

{
 // wait until the level is loaded, and the connection is established

 while (connection == 0) { wait(1); }

Why is this here? If we already tested that the connection variable was a 2 or a 3, then this seems redundant. Well, I think it is! I basically got the entire piece of code from the office.wdl file. I have no idea why it was put here in the first place, so I didn’t bother to remove it. (You didn’t think I actually invented this stuff did you? (
Next we call our routine to gather player inputs.
 // start a function to gather player inputs and send them to the server

 client_move();
 This is the template function to gather up player inputs and send them to the server. It is so important that we will look at it in detail in Chapter 9.
Next we generate a random number to place our cbabe.mdl somewhere near the beginning of the level.

 // create the babe entity at a random place somewhere near the start
 randomize();

 temp.X = -1185 + random(100);

 temp.Y = 1 + random(100);

 temp.Z = -335;
And finally we create our cbabe.mdl.
 player = ent_create(cbabe_mdl,temp,player_client);
 There are a couple of key points here:

1. Rule # 1 comes to play here. Whether this is the client’s babe or the server’s babe being created, the player_client function will be running on the server.
2. The variable player will contain the client babe’s pointer if we are running this session on the client pc. Likewise if this session is started on the server PC, then player will contain the server babe’s pointer.
And finally we make a couple of changes to various skills assigned to the player.
 // the cbabe is created, and its action is running on the server.

 // Therefore we have to initialize her on the client separately -

 // the following flags are required for the camera

 player._MOVEMODE = _MODE_WALKING;

 player.__BOB = ON;

 player._BANKING = 0;
}
If you were to look back at the player_client code, you will see that these are already being defined. So why do it again? That’s, because it’s needed for the clients camera code, but player_client code only executes on the server. So we have to make sure these skills are defined on the client as well.
Now on to the section of code to display the server PC’s IP address. First we test to see if the –sv command line option was used.
// display the server's IP address so you clients can know where to connect to
if (connection & CONNECT_SERVER)
Again we use the ‘bitwise and’ comparison. This ‘If’ statement will be evaluated as true if the connection was started with –sv or –sv -cl).
Then we simply copy the server_name and server_IP variables into the temp_str variable and scroll the message on the display.

{

str_cpy(temp_str,server_name);

str_cat(temp_str," ");

str_cat(temp_str,server_IP);

scroll_message(temp_str);

}

Now that we know how we turned our techdemo level into a multiplayer, let’s look at one of the issues we saw when running the level.
Automatic gun pickup doesn’t work.
Remember our issue with being able to walk through the weapons in the shooting gallery? Let’s take a look at this problem. As I mentioned earlier, we will find the answer to this problem buried deep in the template scripts. Let’s start out by looking at the code for the ‘pistol’ entity as defined in the trange.wdl file somewhere around line 95.

create(<pistol.mdl>,rr_weaponPos, roomR_gunPistol); // create the pistol model

You will probably notice that this uses the older ‘create’ command rather than ent_create. However the 3rd parameter still defines the action that will control this entity. Also remember that this action will be running on the server by default due to rule # 1.
So, here is the code in trange.wdl for the pistol entity itself.
function
roomR_gunPistol()

{

rrange_gun1 = ME;
// save as gun #1

MY.__ROTATE = ON;
// gun rotates before being picked up

MY.__REPEAT = OFF; // repeats (Auto-fire)

MY.__BOB = ON;
// 'bobs' when the player moves

MY.SKILL1 = 42; // x,y,z pos of the gun

MY.SKILL2 = 20;

MY.SKILL3 = 10;

MY._AMMOTYPE = 0.0;

// type of ammo '.' rounds in gun

//(0 means no ammo needed)

MY._WEAPONNUMBER = 1;
// weapon number (press 1 to equip)

MY._BULLETSPEED = 1000.25;
// bulletspeed/range '.' recoil

MY._FIRETIME = 2;//12; // time to cycle (reload)

// SHOOT damage (immediate)

//
Create bullet hole in walls

// 25 points of damage per shot

MY._FIREMODE = DAMAGE_SHOOT + HIT_HOLE + FIRE_LASER + HIT_SPARKS + 0.25;

gun(); (This is a template action

pistolrotator();

}

Ok, so our code is calling a template script. Maybe we better look there. In the templates folder you will find the weapons.wdl file, and in it at around line 1159 you should find the action gun.

At around line 1211 you should see the following code:

MY.EVENT = gun_pickup;

item_pickup();

The MY.EVENT code defines which function to call if an event (like collision) occurs. That should be the code to automatically pick up the gun if we collide with it. The gun_pickup function is at around line 986. Here is the start of the code:

function gun_pickup()

{

if(EVENT_TYPE == EVENT_SCAN && indicator != _HANDLE) { return; }

if(EVENT_TYPE == EVENT_PUSH && YOU != player) { return; }
.

.

.

Oops, do you see the problem? It’s in the second line of code. I looked at this several times before I realized what was wrong. To realize what is going on here, you have to ask yourself, where this code running.
REMEMBER RULE # 1. Entities code runs on the server.
When I first looked at this code, I was fooled into thinking that it was running on my client PC. After all, it was the client babe that I sent into the room to pick up the gun. But, based on rule # 1, we know that the client babe’s code (player_client) is running on the server PC. Likewise the pistol entity’s code roomR_gunPistol is also running on the server. Therefore the gun function is running on the server. Therefore the collision detection is occurring on the server. Therefore the gun_pickup function is running on the server. Get the picture?
So, if gun_pickup is running on the server can you guess what is in the “player” variable? If you guessed the server babe’s pointer, you win! But who collided with the gun? It was the client babe. Therefore YOU (client babe) is not equal to player (server babe) so we return!
if(EVENT_TYPE == EVENT_PUSH && YOU != player){return;} (To Many Players!
Basically this code doesn’t take into account the fact that we have more than one player’s entity present on the server. So how do we fix it? Well I’m not keen on changing the template scripts, as I don’t know specifically why this code is here, and I don’t know what effect it would have on other games using the templates. But, just to check if this is really the problem or not, we’ll go ahead and make a simple change.

Step 1 - Copy the weapons.wdl from the template folder into our work folder.

Step 2 - Comment out the second line of the gun_pickup function.

function gun_pickup()

{

if(EVENT_TYPE == EVENT_SCAN && indicator != _HANDLE) { return; }

// if(EVENT_TYPE == EVENT_PUSH && YOU != player) { return; }
Step 3 - Save the weapons.wdl in the work folder
With the line commented out, we should automatically select the gun when we make contact. Try it out.

You will probably notice that when the client babe touched the gun, the server babe ended up with it. Why? Probably because somewhere deeper in the code, we used the player pointer to attach the gun to the player. But on the server, player is the server babe. To fix this you could probably change the code to attach to the ‘you’ pointer rather than the player pointer.
I think you can start to see that it is very important for you to understand the client/server architecture and its effect on your MP game.
Anyway, let’s go on to some more ‘issues’ that you will have to deal with as an MP programmer. Coming up is where things start getting real tuff; that is internet play.
Chapter 8 – A look at the Internet (WAN)
I hope you had a LAN interface when you went through chapter 5. If you were using the internet instead, you may have already seen some of the issues I am going to describe here. Most of the problems we will talk about in this section have to do with the two internet problems I mentioned earlier. They are Bandwidth and Latency. Before we discuss them specifically, let’s talk about the various types of connections that you might have between your client and server PC.
Network Connections
LANs today are typically 10/100 Base T devices. The 10/100 stands for 10 megabits or 100 megabits. Depending on what you have the NIC hooked up to you could be running at either speed. This represents the maximum number of bits (0 or 1) that you can transmit or receive in one second. So how fast is 100,000,000 bits per second? Fast!
When we start talking about a WAN, there is a variety of devices that you can use to hook up to the internet, and a variety of speeds that these devices can transmit/receive. For example I have cable modem on my home computer. This is called a broadband device. I can receive data through it from the internet at as much as 3 megabits per second. That’s still pretty fast.

However, I can only transmit at a speed of 256KB. That’s 256,000 bits per second. Now this is still pretty good, but no where near as fast as when I am on the LAN. So you can see, my home computer, acting as server on the internet is already somewhat restricted compared to when it is on the LAN.

Other Broadband connections are DSL and ISDN although in my area neither is as fast as cable modem.

One of the disadvantages of a Broadband connection is that you can’t take it with you. Since I travel some for work, I need this ability. Therefore on my laptop I have a dial up connection to a different ISP that has services nation wide.
Dialup connections are regulated so that their speed is no more than 56K bits. The trouble with dialup is that the speed you get depends on what the speed of the modem you are connecting to can handle and the quality of your phone line. So even if you have a 56K dialup modem, you may not really be getting 56K.

Bandwidth

All this leads us to issue # 1, bandwidth. We should consider bandwidth to be the maximum amount of data that we can move between our clients and our server.

If we design our game in such a way that it is sending too much data between the server and the clients, we might exceed a client’s bandwidth.
Likewise, if all of our clients are sending to much data to the server, we might exceed the server’s bandwidth. Both of these conditions create havoc from our games perspective.

Packet Loss

What happens when we exceed our bandwidth? Some of our data is discarded. That’s right, it’s just tossed out. In networking terms, this is called packet loss. So what happens to our game when we loose some packets? Actually A6 uses some built in DirectX functionality to help handle packet loss.
For critical data, DirectX will check to see if the client received the data, and if it didn’t DirectX will retransmit it. Critical data is any packet that absolutely has to get there for our game to function properly. An example of that would be the packet that the client sends to let the server know it has created a new entity. If the server never gets this packet, the client babe won’t be able to move, and no one else will be able to see her. So the A6 engine tells DirectX that this packet is critical. And DirectX guarantees the packet will arrive at the server, even if it has to retransmit it multiple times. The problem is retransmissions won’t help if we are designed our game wrong and it is continually sending to much data. After all, a retransmission is just MORE DATA.
For non critical data, the packet is just tossed. The problem with non critical data is that the game has to be designed in such a way that non-critical data is automatically caught up. An example of that might be a packet that contains the current health of our player. We send it from the server to our client whenever it changes, and the client displays the new value on the Client’s screen. If we loose the packet, oh well. It’s probably not a big deal if we are just deducting 1 from the health each time the player gets hit. So the display isn’t updated until the next time it changes, not a big deal. Why go to the trouble of making DirectX retransmit it, when we are probably going to get hit again pretty soon (especially if you suck at actually dodging bullets) (. Get the idea?

Later we will look in detail at how we can get in trouble by sending to much data, and ways of getting around this. The main thing to remember is that if we are going to play our game over the internet, we need to keep the amount of bandwidth that we use VERY LOW.
Latency

Latency is a networking term that refers to the delay between when we send a packet and when the ‘other’ computer receives it. Latency is caused by three things. First there is the distance between the Server and the Client. Second is the number of hardware devices between the server and the client. And third there is contention between other peoples ‘packets’ being sent out over the network. Here’s a quick way to see latency. From the command prompt run ping as shown below.
[image: image18.png]
Latency example
What I’ve done here is run a program that sends test packets from my computer to a destination computer. Now I am in Illinois. I’m not sure if Conitec’s web server is in Germany, but based on the above, I know it takes a packet around 126 milliseconds to get there and back. Cool.
Here’s another fun one to do:

[image: image19.png]
Tracert shows me every network connection that my packet has to traverse between me and my destination, in this case www.conitec.com. So for me to connect to the Conitec web page, I must go through 21 hardware devices. I’m guessing kundenserver.de is in Germany (, so here’s your answer as to why it takes so long to get a packet there and back. It’s a long way from Illinois, and I have to go through 21 hardware devices just to get there!
Ok, back to our game world. Why do we care about latency? To answer that question, let’s go back to the picture I used to describe the client_move function:

[image: image20.png]
What we said was that client_move sent a packet to the server to tell it that the babe was moving, and then the server sent back a packet to the client telling it where the babe’s new location was. Ok, now do you see the issue? Have you ever heard the term Lag associated with computer games? Latency = Lag. The higher the latency, the longer it takes between when you push the arrow key to move the babe, and when the babe actually moves. 126 milliseconds is about 1/10 of a second. Not bad, but you will probably be able to notice it a little. What if it was 500ms. I bet you would notice it then. A half a second is a long time to wait if you’re dodging bullets (. If you combine latency with bandwidth problems like packet loss we have got some real issues to overcome if our game is to be internet playable. We will explore this some more later on, but for now I think you can see that these are powerful things to deal with in our game code.

A6 tries to help you out on these issues as much as possible, but believe me, if you don’t take latency and bandwidth into account in your game design and scripts, the best game engine in the world couldn’t help you make an internet game.
Chapter 9 – A peek at the template Scripts

Now it’s time to look at the template scripts a little bit. We are going to examine them with our MP programmer’s eye. More importantly, we are going to examine them with our newly gained knowledge about the internet. Let’s look at client_move.

First, where is client_move running? Here is a clue. It’s rule # 2. Since we called client_move from the main procedure, it is running on whichever PC we are running the session on. For now let’s look at it from the client side perspective.
function client_move()

{
It starts off with a variable that is set to indicate that we are using the MP code to move our players. This variable is checked other places in the templates.
client_moving = 1;

Now we need a while loop, since this function must constantly run and gather any inputs entered by the player.

 while(1)

 {
Since client_move can be started before any entities were created, we need to wait until we actually have a player pointer. Therefore we need to do a test to make sure the player pointer has something in it (non null).
 // player created on the client?

 if(player)

 {
The following statement is a call to another template script that will actually test the keyboard, joystick and mouse movements for us and calculate a force to be used for movement.

_player_intentions();
// user key/mouse input sets force and aforce values
Ok, the next little bit of code is kind of confusing. Read the comments in the source code, and then I’ll try to explain what’s going on.

 // we are setting the player's angles directly on the client,

 // and are sending them to the server, rather than sending a keyboard

 // force. This eliminates network latency on rotation.

 // However the player entity will receive the angles back from the

 // server at random intervals, and we have to prevent that they

 // overwrite our directly set angles. For this we store the angles

 // in the aforce skills.
What they are saying here is that the template scripts are designed to change the angle of rotation for the player (client’s babe) directly on the client. Huh? Didn’t I say (over and over) that the client’s entity’s actions are controlled by the server? Well yes I did… by default this is correct. However client_move is trying to compensate for one of the internet issues we discussed in the previous chapter; that is latency. Let’s look at another picture:

[image: image21.png]
The first MP game that I tried to write was an air combat game for two players. I wrote it from scratch (no templates) so I had to write my own routine to gather the players inputs, similar to client_move. However in my routine I simply sent the players inputs to the server and let my client entities movement be totally manipulated there. Now this worked fine when I was testing on a LAN, but when I started trying things out on the Internet it failed miserably. Latency was creating a very noticeable lag in my game. It was impossible to accurately aim the jet fighters. Why? Well the latency between my dialup connection and my server was averaging between 200 and 300ms. So when I turned the client’s jet fighter with the joystick, the pan, tilt and roll reacted somewhere between a quarter of a second and a half second later! Since a jetfighter rotates on all three axis and all three were reacting that slowly, it was impossible to get things lined up to shoot. When I finally went back and looked at the template scripts and what they were doing, I realized the secret! Let the movement forces happen on the server, but do the entity rotations on the client. Now I could instantly turn my jet fighters and aim at the enemy! Cool!
So let’s go back to the client_move code. We said we intend to change the client entity’s rotation directly on the client. However before they actually call _player_rotate to do this, the template scripts seem to be setting the players pan tilt and roll directly from a skill called _AFORCE_PAN.

vec_set(player.PAN,player._AFORCE_PAN);
// retrieve angles
And right after that they call the _player_rotate routine, which is going to adjust the pan, tilt and roll of the player.

_player_rotate();

// rotate on client
What was that all about? Why would we want to change the players pan, tilt and roll with vec_set, and then turn around and call the function _player_rotate, which is going to change the players pan tilt and roll again? This seems silly… but actually it’s very important. As we look further into the code, it should become more obvious as to its purpose.
Alright, now that we rotated the client babe, we need to let the server know this has happened. To do that, we need to send the client babe’s pan, tilt and roll to the server. So here is the MP command they used to do this.

send_vec(player.pan);
// send angles to server
If you look up send_vec in the manual, you’ll find it in the OLD Syntax section. While send_vec currently works, it is on the obsolete list. The newer instruction that you would want to use in your own games would be:

send_skill (player.pan,SEND_VEC);
// send angles to server
Both of these commands send the pan, tilt and roll angles of the player entity back to the server.
Now here is the interesting part. The A6 engine, by default, automatically sends updates of certain entity attributes from the server to the clients. This update by default happens approximately 16 times per second. One of the attributes that the server automatically updates on all the clients is the entity’s angles - pan, tilt and roll.
So, what this means is, when we sent our pan, tilt and roll angles from the client to the server, the server will echo back the pan, tilt and roll to the client. But this automatic update is going to happen with some delay. Latency will slow the messages down, and we only send them every 1/16th of a second.

Well this would look real funny if we let it happen. Let’s say we are turning the pan of our babe at the rate of 1 degree per frame, and we are getting a frame rate of 80 frames per second. If our babe was originally facing pan 0, in 1 second we would have rotated the babe to the pan of 80 degrees on the client. Now, 1/16th of a second later the server sends back the automatic update, setting the pan to 80 degrees. Add to that some heavy internet latency, and a packet might arrive at the client side 4/16th’s of a second later. This packet will set the pan angle of our babe at 80 degrees. The problem is, we have turned another 40 degrees in that ½ second. So suddenly the babe would snap back from 120 degrees to 80 degrees. See the problem?
Well, here is the cure. Every time we rotate the babe, we save her angles in a skill called _AFORCE_PAN. Like so:

vec_set(player._AFORCE_PAN,player.PAN); // store angles
Now, do you see why we set the players pan with vec_set prior to calling _player_rotate? Here is the complete set of code again:

vec_set(player.PAN,player._AFORCE_PAN);
// retrieve angles

_player_rotate();

// rotate on client

send_vec(player.pan);
// send angles to server

vec_set(player._AFORCE_PAN,player.PAN); // store angles

By saving the players angles as skills after we rotate the player, and then restoring the angles just before we rotate the player again, we are effectively ignoring the pan, tilt and roll vectors that are automatically being echoed back to us from the server. Cool!
But hey, there is now a much easier way. With A6, you can simply tell the server to not send an entity vector in the first place. You do this with the .nosend command. If we were going to write this from scratch we would have set my.nosend_angles on when we first created the player (in the player_client function).

Now on to the rest of our move_client code. We have handled the rotation of the client locally, and sent the resulting player angles back to the server. But we have to also deal with the babes actual x, y and z coordinates as she moves forward and backward. To do this we have to rely on the server to coordinate the movement, otherwise collision detection won’t work properly.

Therefore, the templates have defined another skill called _FORCE_X to save the forces (i.e. forward and backward keys), and send that information to the server as well. So here is the code to set the skill with the forces gathered from _player_intentions function.
 // we can't do the same with translation, due to collision detection.

 // so set player forces to forces entered in _player_intentions()

vec_set(player._FORCE_X,force);

And next we use the ‘OLD’ send_vec command to update these forces back to the server.
 // and then send player forces to server, for moving the player there

send_vec(player._FORCE_X);

All that’s left to do is to move our camera on the client.
 // move the camera

move_view();
 }
And of course we need to end our while loop with a wait() call.

 wait(1);
 }
}
So that’s about it for move_client. You’ve seen an example of some code that is trying to deal with latency, one of our two big issues with the internet.

Do you want to see an example of some code that exhibits our bandwidth issue? You don’t have to go far. From what I can see here, move_client is going to generate a bandwidth issue. Why is that? Here is a snip of the same code, only showing the parts of interest.
 function client_move()

{

while(1)

{

if(player)

{

send_vec(player.pan);
// send angles to server

send_vec(player._FORCE_X);

}

wait(1);

}

}
Do you see the issue? Client_move has a while loop, and in the loop we are doing two send_vecs. Assuming each of these is a packet, we are sending two packets on every loop. If our frame rate were locked at 80 FPS, that’s 160 packets going out every second. That’s a lot of packets to send over the internet. My experience says you need to be much lower, something like 20-30 per second total. If you would like to see this in action, you can use the performance monitor of you Windows 2000 or Windows XP operating system to look at the network traffic. Here is what it looked like when I monitored the techdemo MP level.
[image: image22.png]
You can see at the bottom that the UDP packets being received is around 80 per second. Not as high as I might have expected but this is way too many packets for the internet.
At the time of this writing there is a public beta for A6 version 6.3. Just for fun, let’s look at the template script for client_move from the 6.3 beta. Again, I will snip this down to just the parts of interest.
function client_move()

{

 while(1)
 {
if(player)

{

send_skill(player.pan,SEND_VEC+SEND_UNRELIABLE+SEND_RATE);

send_skill(player._FORCE_X,SEND_VEC+SEND_UNRELIABLE+SEND_RATE);

}

wait(1);

 }

}

Well, look here. It appears that there has been some changes made in this part of the code. Notice that the send_vec has been replaced by the newer command send_skill! Now if you were to go out to the 6.3 beta documentation and look at the send_skill function, you would see that they have added a couple of new options called send_rate and send_unreliable. Here are there definitions:
SEND_UNRELIABLE - send in unreliable mode. Otherwise it's sent in reliable mode.

SEND_RATE - send only every n'th frame, while n = dplay_entrate/time.

Speed:

Dplay_entrate is defined as the time between entity updates from server to client, in ticks (default 1 = 16 updates per second). So send_rate will keep the send_skill throttled down to 16 packets per second maximum.

Could we make this even better. I think so. Another trick to these while loops and the send_skill call is to only send data that’s changed. After all, if our Client Babe is just standing there, why bother to send packets to the server telling it to leave the Client Babe where she is already at. The server ought to do that by default. So we could probably alter this code to save our data just after we send it, and then check to see if it’s changed on the next loop before we bother to transmit. Get the idea?

Are you curious about send_unreliable? I briefly mentioned the concept of critical vs. non-critical packets a few pages back. To understand this concept you probably need to know that there are two basic protocols used for internet traffic. They are TCP and UDP.
The good thing about TCP is it is a reliable packet transportation mechanism. That is to say, if we loose a packet on the internet for whatever reason, TCP knows about this loss and retransmits the packet from the sender to the receiver.
UDP on the other hand is a send it and forget it protocol. By that I mean, UDP itself doesn’t care if the packet ever gets to the receiver, it just fires the packet out on the net, and moves on. UDP expects the application to deal with lost packets.
So you would think DirectX would use TCP as its network protocol, wouldn’t you. Wrong. It uses UDP. Why? I guess they studied TCP and UDP game traffic and realized that UDP requires a lot less bandwidth overall. But they also realized that some game traffic must get there, no matter what. This is our critical data. So A6 let’s you decide how you want to send your entity skills sent. Reliable is the default and should be used for all critical data.
But you better think it over carefully before transmitting reliable data. You should think about whether or not this data is really critical to the game world. Why? Because the beta documentation says that if you use it to much, you can create a buffer overflow condition. That’s bad.

If you think about our loop in client_move it is sending updates to the server every 1/16 of a second. It really doesn’t matter if a packet doesn’t make it to the server, because there is another one on the way right behind it. So send_unreliable makes perfect sense in our while loop. This data is non-critical because it is sending updates at a regular interval.
While we are talking about the
Alright, on to our final chapter – game design.
Chapter 10 – A Discussion of Game Design
I thought it best end this tutorial with some thoughts about designing your own multiplayer.

We have covered in the previous chapters, some of the major issues that you must plan for and deal with in your game design and development. There are many more. But if you keep in mind some of the things we’ve already talked about, you’ll be able to work your way through them.
First off, the game should be designed from scratch with MP in mind. You don’t want to spend all of your time going back and trying to retrofit your game, when a few simple design changes up front could make all the difference in how it plays.
Always remember that you have more than one player, opening doors, picking up health packs, firing weapons, etc. Also, decide up front how many players will be allowed to join any given game. You may need things like arrays to track who has what, and you’ll need to know up front how big to make them.
Start with something small, like a 10 player game. Properly designed, it should be very playable over the internet using A6. Remember the more players you allow in the game, the more network bandwidth you will chew up on the server.

If you’re eye is on a MMOG, still start with something small. Once you have everything running great with 10 players, you’ll be able to move on to the complexities of a MMOG.
Equally important when designing your game, is keeping in mind where the code will be running. Then consider where it should actually run. Although we didn’t get into the details, there are ways of getting A6 to run the code on the Client or the Server or both. You have to decide up front where the best place to run it is. What you are really deciding is where to let a piece of code run so that it will have the least impact on bandwidth and latency. I’ve given you a few examples.
You’ve seen how the template scripts have the client side handle the rotation of entities, while the server side handles collision detection and movement. For some entities, you might want to consider having all their code run strictly on the clients.
Also, special effects are a great thing to have run on the clients only. If you want to see an entity explode into hundreds of fragments, why not have that happen on the client side only. The server could simply start a fuction with proc_local on all of the clients that handled the explosion. This would save a lot of network traffic. While you are at it, consider having any particle effects run on the server as well, especially those that generate lots of particles. How important is all of this? Well remember when we were doing our walkthrough of the techdemo MP and I mentioned that the Dynamic Lighting Room looked great on a LAN, but the LAN was hiding some serious issues? Take a look at this:
[image: image23.png]
This is the MS performance monitor output when I entered the Dynamic Lighting Room of the Techdemo MP. Look at the Datagram’s Sent/sec, 600+ is a huge number when you are considering bandwidth and overall game play on the Internet. The reason it is so high is because all of the special effects that we saw are running on the server, and then updating the client. This room would need a total makeover to be usable on the internet.
Remember to write your game in such a way that you only need to transmit things that have changed. Let’s say that when a player presses the space bar, you want them to fire their weapon. When the space bar is pressed you change the _FIRING skill to indicate the player is firing and then send the skill. Why not just send the _FIRING skill when its value changes? Why send thousands of packets over the internet to tell the server that our trigger happy player is still holding down the space bar.

Remember to use reliable and unreliable as appropriate. If you are only going to send one packet to indicate something has changed, as in the case of sending the _FIRING skill, then it better be reliable. Otherwise you may burn up all your ammo due to a lost packet(.

Use the resources you have available. Look at the template scripts to see how they do things. Use the Multiplayer forum to ask questions. Study all of the tutorials. There are books that describe multiplayer development in a generic sense. Also try searching the web, there’s a lot of game development sites that discuss multiplayer issues in detail.

Actually I could go on talking about this stuff all day, but the best thing you can do is start playing with it yourself. As I mentioned earlier, I would recommend that your next step is to go through locoweeds tutorial which you can find hosted at http://www.locoweed.v-worlds.net/. It is a good example of how to make a multiplayer game from scratch, and it covers many of the topics that we have discussed in much greater detail.
I hope you have enjoyed this tutorial, and I hope you have great success developing a multiplayer game with 3DGS.

Giorgi3

Appendix
I can’t connect!
Here are some possible reasons why you can’t connect.

1. If both the client and the server are on the same LAN, you may have different session names for the application running on the client and the server. Check to see that you are running techdemo.exe on both systems. Check that techdemo.wdl is the name of the main script file for your techdemo level. Try using the command line option –sn to specify a session name that is identical on the client and on the server.

2. If you are connecting over the internet, you must specify the IP address of the server when you start the client. The IP address is displayed in on the left side of your servers screen when you have techodemo running.

If the IP address is displayed as 192.168.0.1 or anything else that starts with 192, then you are using a router or MS home network to act as a gateway to the internet. You will need to find the IP address that was assigned to you by your ISP. Check your router documentation to see how to view the IP address of the router. Try running
3. It’s possible you don’t actually have a network connection. Try running the ping program in a MS command window. Specify the IP address of the server and see if the ping packet’s get answered.
Jerky Clients

We are not talking about a customer that acts like a jerk here(. Jerky clients are when the Client Babe does not move smoothly in 3rd person mode, or when the Client’s camera view seems to jump around in 1st person view.
The most likely cause of this is Latency or Lag. Press the F11 key on the server. The value in the upper right hand corner of the debugging display is latency. If this is > 100 you are probably running your client and server over the internet. If you have a LAN available, run both the client and the server on the LAN.
Check which version of A6 your are running. Many of the earlier versions had issues with smoothing. Try setting dplay_smooth = 0. This turns off the engines smoothing feature.

Debug display

Below is the debug display format taken from the A6 manual. Use the F11 key to activate this display. Notice the last column contains some Networking Traffic data. Latency in Milliseconds is shown in the first row. The second row is the current bytes per second. The third row is the peak bytes per second reached in this session. For the Network traffic column, lower numbers are better.

	Rendering speed
	Camera position
	Camera angle
	Mouse position
	Video memory
	Number of visible/running
	Time for
	Network traffic

	
	
	
	
	
	
	
	

	Fps
	xyz
	ang
	Ptr
	mem
	num
	ms
	net

	frames/sec
	x
	pan
	X
	script objects
	wmb polygons
	wmb & sky
	 latency

	
	y
	tilt
	Y
	wmb surfaces
	entity polygons
	level entities
	 bps

	
	z
	roll
	
	shadow maps
	particles
	particles
	 bps-peak

	
	
	
	
	models & sprites
	number of all entities
	portals & mirrors
	

	
	
	
	
	free
	non-culled entities
	panels & screen entities
	

	
	
	
	
	
	non-entity functions
	screen refresh
	

	
	
	
	
	
	entity actions
	script execution
	

	
	
	
	
	
	
	physics
	

“Bitwise and” operation (&)

A couple of times in the tutorial we saw a ‘bitwise and’ operation used in a comparison. The “If (connection & CONNECT_CLIENT)” comparison is an example of using the “bitwise and” operator which is coded as a “&”. It is checking to see if the CONNECT_CLIENT bit is set in the connection variable. In other words, if we started the game with a –cl or a –sv –cl, then this comparison will test as true.

Do you want to know more about the “bitwise and operation”?

Ok, let’s get techie! A “bitwise and” operation, does a check of two values on a bit for bit basis. If a bit is on in both variables then the resulting bit is set to on. If a bit is off in either of the comparison variables, the resulting bit is off. So a bitwise and operation requires both bits to be on (or true) for the resulting bit to be on (or true).
Here are the decimal and binary values of the connection variable are:

Connection Decimal # Binary Number

-------------- ------------ -------------------

None 0 00

-sv 1 01

-cl 2 10

-sv –cl 3 11

Now I happen to know that the CONNECT_CLIENT variable is defined as a 2 or binary 10. So let’s take all four possible values of the connection variable and do a “bitwise and” operation on them.

Command Lin Option None -sv -cl -sv -cl

Connection Variable Decimal 0 1 2 3

Connection variable in binary: 00 01 10 11

CONNECT_CLIENT (2) in binary: 10 10 10 10

 ------ ------ ------ ------

Result of ‘Bitwise And’ 00 00 10 10

True or false equivalent False False True True

So if we started the level with a –cl or a –sv –cl, the result will be true. Way Cool!

