
3D Gamestudio WDL Workshop Fighting © Conitec August 2001 1

3D GameStudio

Workshop
Fighting

for A5 Engine 5.10
by Alain Brégeon August 2001

The latest news, demos, updates and tools, as well as the Users' Magazine, the Users' Forum and
the annual Contest are available at the GameStudio main page http://www.3dgamestudio.com.

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 2

Contents
Foreword..3

Our Fighter...4

Design the fighting level ...6

Adding the fighters..8

Create your script..9
Adding Paths..9
Adding Includes...9
Starting Engine Values..10
Our variables of games..10
Display the A4/A5 logo...11
The Main function...11
Install the camera position ...12

Make the Entities Fighters!...13
Management of the camera...15

The Game Course ...16
The states of the players...16
The animation...17

The game..19
The movements of the left player...20

Conclusion...31
In Addition..31

Camera effects ..31
A little bit of animation..33
A start screen...36
The audience...38
The background music...39

Conclusion (2)..39
The kicks with the knees:..41

Conclusion (3)..43

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 3

Foreword

Dear Reader,

created this workshop in order to help you to find an answer to the question “How to make a
fighting game with 3D GameStudio?” The features used in this workshop are available with the

version 4.25 or later.
I
This workshop, like others before is targeted at users who have some previous experience with 3D
GameStudio. I assume that you have worked through the tutorials and know, how to use the tools
(WED,MED and WDL).

This text improves the documentation which comes with 3DGameStudio, and cannot replace it. If
something in this workshop is unclear to you, please read through the manuals enclosed. I
apologize in advance for any unclear wording, faulty code, errors or omissions.

I hope you find the workshops informative and enjoyable.

Alain Brégeon
mailto:alainbregeon@hotmail.com

The philosophy of fighting this tutorial is based on, is deeply inspired by the demo 'Rockem'
supplied that comes with the C ++ SDK by Microsoft ©.

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 4

Get the latest version
Before you begin, please make sure to have the latest version of 3DGameStudio (4.25 or later).

Prepare your workspace
Create a folder called "fighting Workshop" in your GSTUDIO folder. This is the directory where
you will store all the game elements.

The first thing that we are going to do, is to add the entities which we need for our game into the
folder. If you do not have them yet, visit conitec's download site ((http://www.conitec.net /
a4update.htm) and get them. Unzip the contents into your folder.

Your folder should now contain the following files:

left_health.pcx
right_health.pcx
fighter.mdl
left_win.wav
dodge.wav
gong.wav
punch.wav
punch_dummy.wav
right_win.wav
swing.wav

Fighting Workshop folder

Our Fighter

It is well known that fights stopped for the lack of fighters. So, if we want to create a fighting
game, first of all we need fighters.

Our character should be able to dodge, to punch, to get hits, wait, die and win. The character that
comes with this tutorial does all of it. Regarding the skins, I did the simplest for a good
understanding of the tutorial: a red skin and a blue one.

Open MED, load fighter.mdl and have a look at all animations that this fighter can do.

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 5

the fighter.mdl

Of course he could do much more, but in order not to overload this tutorial, we should be satisfied
with these 6 animations.

the red skin

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 6

Design the fighting level

We find ourselves compelled to choose: a boxing ring, a street, the moon... The only condition we
have to meet, is to leave enough space for the camera. Here is my personal choice:

Open WED and select File-> New

Open the texture manager (Texture > Texture Manager). Select add WAD, and add the
standard.wad. Close the texture manager.

Choose Add Primitive - > Cylinder -> 16.

Enlarge the circle until you get about 5 big squares in diameter.

Hollow the block by Alt+H, which reduces its height to 2 small squares, scope down, select the
top wall of your box and delete it.

I used the standard textures. On sides I took the texture metalrivet2 and on the ground I have
choosen the texture metalribbed5.

building the arena

Now we create a sky which is not really necessary, but we do it to keep the proper etiquettes.

Choose Add Primitive -> Cube (large) and keep the sides of your cube clear of the cylinder.
Hollow the block by Alt+H and apply a texture (gate1 for example).

We add 2 or 3 lights (Add Light) and we have to take good care with it: The first one we put into
the left corner of our ring, the second into the right one and the third light will be set into the
midle.

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 7

setting the lights

I feel you impatient to see what your level looks like. So go on, save it under the name of
fighting then build with fly-thru = enable marked. Here is the result. Isn't it nice?

The illuminated arena

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 8

Adding the fighters

All we have left do do, is to place the two fighters and we are done so far.

Select Object-> Load Entity and browse the navigator to find the model fighter.mdl.Get it and
the model appears in your world. Place it near the center onto the ground.

fighter.mdl added

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 9

Create your script

Create a script for your level. Just open your property window (File > MapProperties) and click
the button new. The button next to it should change from ndef into fighting.wdl.

New Script in Map Properties

Open your level folder, select and open (double-click) the file fighting.wdl. If Windows asks
which application to use to open the file, choose "notepad" (or any other plain text editor).

You will notice that the standard game “Templates” have been created for you. This is fine for
most projects but we want to do something more advanced this time. Go ahead and select
everything (in Microsoft Notepad use Edit->Select All) and hit the delete key. Now you're
starting from ground zero!

Adding Paths

Lets start by defining the paths our program is going to use. Paths are needed to tell the engine
where it can locate the files used in our project (images, sounds, other scripts, etc.). The folder we
are in ("Fighting Workshop") is already included so, in our case, we only need to add the
templatel folders.

Type in the following line:

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 10

path "..\\template"; // Path to WDL templates subdirectory

Note that all paths are relative to our level folder. The line above says the following, "Go 'up' one
directory ("...") and go into the template folder (\\template)".

Adding Includes

After we set up our paths we should add our include files. Type in the following below path:

include <movement.wdl>; // libraries of WDL functions
include <messages.wdl>;
include <menu.wdl>; // menu must be included BEFORE doors and weapons
include <particle.wdl>; // remove when you need no particles

The include command tells the engine to replace this line with the contents of the file between
the angular brackets (<...>). It is as if you went to the file in question and copied all the code from
it and pasted it into you script.

This is a powerful tool because it allows us to reuse code from other projects and take advantage
of updates in the included files without having to rewrite your code. For example, the 4.19 update
included code to allow the player to swim in water. So now any project that includes
movement.wdl can use this new swimming code.

Just like paths, the order of the include lines is important. Since some scripts use values that are
defined in other scripts. For example: actors.wdl uses the variable force which is defined in
the movement.wdl If we put actors.wdl before movement.wdl we would get errors.

It's okay to include scripts even if you don't use features from them in you code. Most of the files
in the template are interdependent on each other so if you plan to use one of them, you should
include all of them just to be safe. The exception to this rule is the venture.wdll script, which
is not used by any of the other scripts, but uses many of them.

Starting engine values

Now we are going to set some important values that will help to determine how the simulator will
be displayed. These values effect the resolution, color depth, frame rate, and lighting. Add the
following lines beneath the include lines:

 // Starting engine values
ifdef lores;
var video_mode = 4; // 320x240
ifelse;
var video_mode = 6; // 640x480
endif;
var video_depth = 16; // D3D, 16 bit resolution
var fps_max = 50; // 50 fps max

Our game variables

It is here that we shall enter our game variables according to our needs:

//our skills ***

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 11

Display the A4/A5 logo

We apply the display of the logo, which is located in the templates directory:

///
// define a splash screen with the required A4/A5 logo
bmap splashmap = <logodark.bmp>; // the default A5 logo in templates
panel splashscreen { bmap = splashmap; flags = refresh,d3d; }

The main function

In any project you need a main function. This is the very first function to be called when the
program starts. In most cases the main function is very simple, our main is no exception. Please
enter the following lines (below your last line):

function main()
{

fps_max = 50;
warn_level = 2; // announce bad texture sizes and bad wdl code
tex_share = on; // map entities share their textures

// center the splash screen for non-640x480 resolutions
splashscreen.pos_x = (screen_size.x - bmap_width(splashmap))/2;
splashscreen.pos_y = (screen_size.y - bmap_height(splashmap))/2;
splashscreen.visible = on; // set it visible
wait(3); // wait 3 frames (for triple buffering) until it is renderight and flipped to the foreground

// now load the level
load_level (<fighting.wmb>);

// wait the required second, then switch the splashscreen off.
waitt(16);

 splashscreen.visible = off;
bmap_purge(splashmap); // remove logo bitmap from video memory
load_status(); // load some global variables, like sound volume

Each of these lines is commented, so there is no need of further explanations.

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 12

Initialize the camera position

We are going to use our third light position, to get the coordinates of our camera. Select the
camera and drag it onto the coordinates of that position (you find them displayed at the bottom of
the WED window).

Here are the values, we achieve in our example (please , note yours):

position the camera

It is not so much important to work very precisely here because, as we see later, our camera is
dynamic.

Next we overtake these values and enter them into our main module:

camera.pan = 90;
camera.tilt = 345;
camera.x = 0;
camera.y = -280;
camera.z = 46;

Now it is time to implement the health variables.
Please type the following lines:
var right_health = 100;
var left_health = 100;
bmap left_health_map = <left_health.pcx>;
bmap right_health_map = <right_health.pcx>;

panel left_health_pan
{

pos_x = 20;
pos_y = 30;

 layer = 1;

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 13

 hbar = 0,0,200,left_health_map,2,left_health;
 flags = d3d,overlay,refresh;
}

panel right_health_pan
{

pos_y = 30;
 layer = 1;
 hbar = 0,0,200,right_health_map,2,right_health;
 flags = d3d,overlay,refresh;
}

Then, below the main function, we enter these lines after the camera:

right_health_pan.pos_x = screen_size.x – (bmap_width(right_health_map) + 20);
right_health_pan.visible = on;
left_health_pan.visible = on;

}

The first line allows to display the health points within 220 pixels (200 pixels is the width of the
bitmap + 20 pixels) off the right edge of the screen.

Make the Entities Fighters!

To make it better readable, we called the blue player “left” and the red one “right”.
So underneath our variables we type:

synonym left { type entity; }
synonym right { type entity; }

var skin_right = 1;
var skin_left = 2;

Then we create an action for each of the entities that we place after the function main()

action player_right
{

right = my;
my.skin = skin_right;
my.pan = 180;
if (my.shadow == off) { drop_shadow(); }
while ((right == null) || (left == null)){wait 1;}

}

action player_left
{

left = my;
my.skin = skin_left;
my.pan = 0;
if (my.shadow == off) { drop_shadow(); }
while ((right == null) || (left == null)){wait 1;}

}

It's high time now to save our file and return in WED to see the fruits of our work.

To determine the relevant action, we select the left person then right click to bring up the entity's
properties panel where we assign player_left as action. Do the same now with

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 14

player_right.

assigning the entity's action

Now save the level, build and run it. If you did fine, it should look like this:

two fighters in the arena

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 15

Management of the camera

As we see on the picture, a step backward of one of the players would bring him outside the
camera's view. That's why we are going to write a little funktion which we will call within every
movement of a player to reposision the camera.

As position X we take the point amidst the two players. Our point Y will be the distance between
them plus 50.

calculating the camera positions

We write this function at the very end of our script:

function pos_camera()
{

camera.z = 90;
camera.x = ((right.x+left.x)/2);
camera.y = - ((right.x-left.x) + 50);
wait (1);

}

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 16

The Game Course

The game can be subdevided into 4 main phases:

The “left” player's action is controled by the arrow keys as follows:

Punch

Backward Forward

Dodge

The action of the “right” player requires artificial intelligence, which in our case will be quite
short. We plan three possible states for this player:

• Prudent
• Defensive
• Offensive

The transition between these states depends partially on our behavior and on the other hand by a
random factor included.

Therefore we write the following variables in our script:

var prudent = 1;
var defensive = 2;
var offensive = 3;
var right_state_of_mind;

The states of the players

As we decided at the beginning by choosing our model, we kept 6 states which are:
waiting dodging punching
win pain dead

Left
action

Right
action

Left
animation

Right
animation

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 17

So we write the following variables in our script:

var waiting = 1;
var dodging = 2;
var punching = 3;
var pain = 4;
var dead = 5;
var win = 6;

var right_action_state;
var left_action_state;

As well, we want to hear voices during some of these actions, so let us add some sounds as
follows:

sound dead_sound = <dead.wav>;
sound punch_sound = <punch.wav>;
sound punch_dummy_sound = <punch_dummy.wav>;
sound left_win_sound = <left_win.wav>;
sound dodge_sound = <dodge.wav>;
sound lark_sound = <lark.wav>;
sound right_win_sound = <right_win.wav>;
sound gong_sound = <gong.wav>;
sound swing_sound = <swing.wav>;

The animation

For the animation, we use the instructions ent_frame() and ent_cycle(), but if we have to
intervene inside an animation, we have to use the parameter frame in a proper way for every
entity. For example: when the right player punches to you, you can dodge the blow at the first
frame. But at the second frame it is too late, the blow is already completed.

You can dodge the blow... It's too late to dodge

This requires to analyze each animation cycle and find the frame numbers for the beginning, the
end and if necessary somewhere in the middle.

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 18

You are lucky I did it for you with this model, but for the other models, you have to do it yourself.

So we type the following variables:

var start_wait = 44;
var end_wait = 48;
var start_dodge = 40;
var end_dodge = 44;
var start_punch = 48;
var end_punch = 52;
var start_pain = 64;
var end_pain = 73;
var start_win = 1;
var end_win = 10;
var start_dead = 73;
var end_dead = 88;

var start_left_frame = 44; //wait
var end_left_frame = 48;
var start_right_frame = 10; //wait
var end_right_frame = 12;

Actually the endframe corresponds to the last frame + 1.

We have left some variables to be defined like the boards of the territory and the distance within
the punch of a player reaches the opponent.

For the edges of the territory, we use again our two left and right (light-) positions in WED and
apply them as the X coordinates.

finding the x coordinates

So we note 278 and create the following 2 variables:

var left_edge = -250; //dependend on width level
var right_edge = 250; //dependend on width level

For the minimum distance between the players we open the frame punch2 (spreaded arm) in
MED, and place the mouse at the extremity of the outstreched arm. The given coordinates
determine our value X.

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 19

finding the minimum distance value

Now we create the following two variables:

var min_dist_between_right_left = 42;
var dist_between_right_left;

And we compled our variables by determing the two following ones whose use will become clear
with further explanations.

var left_state_attack_block = 0; // 1 = attacking 2 = blocking;
var alea;

Finally we are ready to fight.

I know how much frustrating it is to write code without being able to test it. So first of all, we are
interested in the blue player and jump into action with alternately animations.

The game

For this we are going to create our game function game() and position our labels.

function game()
{

wait (100);
right_state_of_mind = prudent;
left_action_state = waiting;
start_left_frame = start_wait; //waiting
left.frame = start_left_frame;
end_left_frame = end_wait;
right_action_state = waiting;
start_right_frame = start_wait; //waiting
right.frame = start_right_frame;
end_right_frame = end_wait;
play_sound (gong_sound,100);

while (1)
{

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 20

//here left action

//here right action

left_anime:
//here left animation

right_anime:
//here right animation

fin:
wait(1);

}
}

And add

game();

.... at the final end of the main function

Now let us try out. If everything is all right, you hear the gong and the players are in position
ready to fight.

The movements of the left player

Type the following lines:

//here left animation
dist_between_right_left = right.x - left.x; //left move forward if not win and not dead

if ((key_cur == 1) && (left_action_state != win) && (left_action_state != dead))
{

//make sure left can move to right
if (dist_between_right_left > min_dist_between_right_left)
{

left.x += 2;
pos_camera();

}
}

//left move backward if not win and not dead
if ((key_cul == 1) && (left_action_state != win) && (left_action_state != dead))
{

//make sure left can not out left edge
if (left.x > left_edge)
{

left.x -= 2;
pos_camera();

}
}

Then try it out. Move forward, move backward, check out if you don't exceed any given limit. If
so, adjust the left_edge and right_edge values. Also admire the camera movements. As
soon as the right Player knocks you out, there is no time left at all to look at anything.

Actually we must admit, that our player moves back and forth in a quite funny way. To fix this,

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 21

insert the following lines after left_anime:

//here left animation
dist_between_right_left = right.x - left.x;

if (left_action_state== waiting)
{

left.frame += .3*time;
if (left.frame >= end_left_frame-1) {left.next_frame = start_left_frame;}
else {left.next_frame = 0;}
if (left.frame >= end_left_frame) {left.frame = start_left_frame;}
goto right_anime;

}

You understand it well and there is no need to tell you, that you can do that in any phase.

I know, you are as impatient as me. So let us breath some life into our opponent. Therefore type
the following after right_anime:

dist_between_right_left = right.x - left.x;

if (right_action_state == waiting)
{

right.frame += .3*time;
if (right.frame >= end_right_frame-1) {right.next_frame = start_right_frame;}
else {right.next_frame = 0;}
if (right.frame >= end_right_frame) {right.frame = start_right_frame;}
goto fin;

}

Let us defend ourselves!

To do so, we need do add the following code into our section (left_action) after the
movements:

if ((key_cuu == 0) && (left_state_attack_block == 1)){left_state_attack_block = 0;}

//left dodge
if ((key_cud == 1) && (left_state_attack_block == 0))
{

if ((left_action_state != dodging) && (left_action_state != dead) && (left_action_state != win))
{

//left = dodging
left_action_state = dodging; //dodging
left_state_attack_block = 2; //blocking
start_left_frame = start_dodge;
left.frame = start_left_frame;
end_left_frame = end_dodge;

}
}

And into our left_anim we insert the following after the waiting action:

if (left_action_state== dodging)
{

left.frame += .5*time;
left.next_frame = 0;
if (left.frame >= end_left_frame)

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 22

{
left_action_state = waiting;
start_left_frame = start_wait; //waiting
left.frame = start_left_frame;
end_left_frame = end_wait;

}
goto right_anime;

}

We are ready to deal blows by typing what follows but we should be a little more patient because
the animation needs some more explanations.

So go on in left_action and continue with:

//left attack
if ((key_cuu == 1) && (left_state_attack_block == 0))
{

if ((left_action_state != punching) && (left_action_state != win) && (left_action_state !=
dead))

{
//left = punching
left_action_state = punching;
left_state_attack_block = 1; //attacking
start_left_frame = start_punch;
left.frame = start_left_frame;
end_left_frame = end_punch;

}
}

 if ((key_cuu == 0) && (left_state_attack_block == 1)){left_state_attack_block = 0;}

Now let us continue the left_animation and write and comment the punch animation:

if (left_action_state== punching)
{

if (left.frame == start_left_frame){play_sound (punch_dummy_sound,40);}
left.frame += .5*time;
left.next_frame = 0;
if (left.frame >= end_left_frame)
{

left_action_state = waiting;
start_left_frame = start_wait; //waiting
left.frame = start_left_frame;
end_left_frame = end_wait;

This far everything is all right. One punches and the other keeps on waiting. If you want to try
that out (You're all the same big babies), go ahead and take the advantage to smash his head -
soon he will be able to defend himself! Close with two brackets and don't forget to indent them.

This is how we continue:

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 23

no

yes

yes

no

no

yes

right_anime

right_anime

And this is how we write it:

//have we hit right player ?
if (dist_between_right_left < min_dist_between_right_left+ 4)

 {
//right may be dodging
if ((right_action_state == dodging) && (right.frame > start_dodge + 1))

 {
play_sound (dodge_sound,100);
goto right_anime;

}

if (right_health == 0){goto right_anime;}

if (right_health > 0) {right_health -= 10;}

 if (right_health == 0)
 {

Right player
touched ?

dodge?

play dodge

Aïe, aïe, that hurts

health = 0 ?

play punch
right = pain
Aléa 50% =
defensive

If health <> de 0
Health = health - 10

right = dead
left = w in

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 24

//right has died
right_action_state = dead;
start_right_frame = start_dead;
right.frame = start_right_frame;
end_right_frame = end_dead;

//left has won
left_action_state = win;
start_left_frame = start_win;
left.frame = start_left_frame;
end_left_frame = end_win;

goto right_anime;
}

 play_sound (punch_sound,50);
pos_camera();

right_action_state = pain;
start_right_frame = start_pain;
right.frame = start_right_frame;
end_right_frame = end_pain;

//what should right do ?
if (random (2) < 1){right_state_of_mind = defensive;}

}
}

goto right_anime;
}

And I forbid you to knock him down....

Also our left player can take blows.

Continue the left_animation by typing:

if (left_action_state== pain)
{

if (left.frame == start_left_frame)
{

play_sound (punch_sound,50);
if (left.x > left_edge){left.x -= 10;}

}
 left.frame += .5*time;

left.next_frame = 0;

pos_camera();
if (left.frame >= end_left_frame)
{

left_action_state = waiting;
start_left_frame = start_wait; //waiting
left.frame = start_left_frame;
end_left_frame = end_wait;

}
goto right_anime;

}

We are finished with our left player. (what turned out that he died, but we are not forced to do so).

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 25

Concerning the right player we now should analyze his artificial intelligence.

no

left_anime

yes

yes

no

yes
left_anime

no yes

yes

no
no yes

 no no
yes

left_anime

left_anime

left_anime

Generate a random number
betw een 0 and100.

right= w aiting
?

Left = punching
AND

Alea < 15 ?

right= dodging

righton defensive ?

Alea <2 5?

right= backw ard

right= prudent ?

Alea <10?

Alea <5?

right= offensive ?
right= prudent

right= offensive

continues
next page…

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 26

left_anime

The same in WDL code:

if (right_action_state != waiting) {goto left_anime;}
// Random value to determine what right should do based upon its state
alea = random (100);//0 to 100

dist_between_right_left = right.x - left.x;

if ((alea < 15) && (left_action_state == punching) && (right_action_state== waiting))
{

right_action_state= dodging;
start_right_frame = start_dodge;
right.frame = start_right_frame;
end_right_frame = end_dodge;
goto left_anime;

}

if (right_state_of_mind == defensive)
{

if (alea < 25) //backward
{

if (right.x < right_edge)

Right = backw ard

Right = punching

Alea >50 AND
left = punching

And right near lef t

right= forw ard

Alea <15 AND
right= w aiting

And right near lef t

Alea <50?

...continuation

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 27

{
right.x += 2;
pos_camera();

}
}
if (alea < 10) {right_state_of_mind = prudent;}
goto left_anime;

}

if (right_state_of_mind == prudent)
{

if (alea < 5) {right_state_of_mind = offensive;}
goto left_anime;

}

if (right_state_of_mind == offensive)
{

if (alea < 50) //forward
{

//make sure right can move to left
if (dist_between_right_left > min_dist_between_right_left)
{

right.x -= 2;
pos_camera();
//son de pas

}
}

//attack or not attack that is the question ?
if ((alea < 15) && (right_action_state== waiting) &&

(left_action_state != dead) && (dist_between_right_left < min_dist_between_right_left + 10))
 {

right_action_state= punching;
start_right_frame = start_punch;
right.frame = start_right_frame;
end_right_frame = end_punch;

}

//right backward or not if left = punching
if ((left_action_state == punching) && (alea > 50) && (right_action_state== waiting)

&& (dist_between_right_left < min_dist_between_right_left+ 10))
 {

//make sure right can not exceed right edge
if (right.x < right_edge)
{

right.x += 1;
pos_camera();

}
}

}

The animation of the red player is almost identical with the blue one, so we type the following
lines in right_anime after the waiting:

if (right_action_state== punching)
{

if (right.frame == start_right_frame){play_sound (swing_sound,40);}
right.frame += .5*time;
right.next_frame = 0;
if (right.frame >= end_right_frame)
{

right_action_state = waiting;

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 28

start_right_frame = start_wait; //waiting
right.frame = start_right_frame;
end_right_frame = end_wait;

//have we hit left player ?
if (dist_between_right_left < min_dist_between_right_left+ 4)

 {
//right may be dodging
if ((left_action_state== dodging) && (left.frame > start_dodge + 1))

 {
play_sound (dodge_sound,100);
goto fin;

}

if (left_health <= 0){goto fin;}

if (left_health > 0) {left_health -= 10;}

 if (left_health == 0)
 {

//left has died
left_action_state = dead;
start_left_frame = start_dead;
left.frame = start_left_frame;
end_left_frame = end_dead;

//right has won
right_action_state = win;
start_right_frame = start_win;
right.frame = start_right_frame;
end_right_frame = end_win;

goto fin;
}

//play_sound (punch_sound,50);
pos_camera();

if (left_action_state != pain)
{

left_action_state = pain;
start_left_frame = start_pain;
left.frame = start_left_frame;
end_left_frame = end_pain;

}
}

}

goto fin;
}

if (right_action_state== pain)
{

if (right.frame == start_right_frame) //rouge recule
{

if (right.x < right_edge){right.x += 10;}

}
right.frame += .5*time;
right.next_frame = 0;
pos_camera();

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 29

if (right.frame >= end_right_frame)
{

right_action_state = waiting;
start_right_frame = start_wait; //waiting
right.frame = start_right_frame;
end_right_frame = end_wait;

}
goto fin;

}

if (right_action_state== dodging)
{

right.frame += .5*time;
right.next_frame = 0;
if (right.frame >= end_right_frame)
{

right_action_state = waiting;
start_right_frame = start_wait; //waiting
right.frame = start_right_frame;
end_right_frame = end_wait;

}
goto fin;

}

Now we have nothing left to do but to manage death and victory for the both of our players.

And here we go:

In left_anime :

if (left_action_state== dead)
{

right.pan = 0; //pour le salut
left.frame += 1.2*time;
left.next_frame = 0;
//son quand touche sol
if (left.frame >= end_dead)
{

//right wins
left.frame = end_left_frame;
if (right.frame == start_right_frame){play_sound (right_win_sound,100);}
right.frame += .5*time;
right.next_frame = 0;
if (right.frame >= end_right_frame)
{

right_action_state = waiting;
start_right_frame = start_wait; //waiting
right.frame = start_right_frame;
end_right_frame = end_wait;
right.pan = 185;
left_action_state = waiting;
start_left_frame = start_wait; //waiting
left.frame = start_left_frame;
end_left_frame = end_wait;
left_health = 100; //pret à recommencer
wait(100);
play_sound (gong_sound,100);
pos_camera();

}
}
goto right_anime;

}

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 30

... and in right_anime :

if (right_action_state== dead)
{

right.frame += time;
right.next_frame = 0;

//son quand touche sol

if (right.frame >= end_right_frame)
{

//left wins
right.frame = end_right_frame ;
if (left.frame == start_left_frame){play_sound (left_win_sound,100);}
left.frame += .3*time;
left.next_frame = 0;
if (left.frame >= end_left_frame)
{

left_action_state = waiting;
start_left_frame = start_wait; //waiting
left.frame = start_left_frame;
end_left_frame = end_wait;
right_action_state = waiting;
start_right_frame = start_wait; //waiting
right.frame = start_right_frame;
end_right_frame = end_wait;
right_health = 100; //pret à recommencer
wait(100);
play_sound (gong_sound,100);
pos_camera();

}
}
goto fin;

}

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 31

Conclusion

I would like to say “that's it” which is fairly true. However, we are not going to leave it at that.

What else could be added?

The first thing results from a look at our fighter in MED. As we see, he also can use his knees to
kick. If you like to, go ahead and include that on our own - it cannot be really difficult after all.

kicking fighter

In Addition

Now I intend to complete the whole thing and trim it with some fun.
As there are for example different camera views, bird sounds combined with animation for the
one who has fallen to the ground, a start screen which offers the choice to select the player's color,
background music, audience etc.

Camera effects

Besides the camera view, we already have, we plan two supplementary camera views. One from
behind the left player, the second one with the camera on his shoulder. A third view will show our
haed every time, we get hit. So we obtain four views alltogether.

Therefore we create a variable:

var cam_view = 0; //default

Then at the end of our script we write:

on_f1 = cam_view1;
on_f2 = cam_view2;
on_f3 = cam_view3;
on_f4 = cam_view4;

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 32

function cam_view1()
{

if (cam_view > 3){cam_view = 4;}
else {cam_view = 0;}

//cam_view = 0;
pos_camera();

}

function cam_view2()
{

if (cam_view > 3){cam_view = 5;}
else {cam_view = 1;}
//cam_view = 1;
pos_camera();

}

function cam_view3()
{

if (cam_view > 3){cam_view = 6;}
else {cam_view = 2;}
//cam_view = 2;
pos_camera();

}

function cam_view4()
{

if (cam_view > 3){cam_view -=4;}
else {cam_view +=4;}
pos_camera();

}

Then we replace our function pos_camera by this one:

function pos_camera()
{

cam_left.x = right.x;
cam_left.y = right.y;
cam_left.z = 60;
cam_left.pan = 180;
cam_left.arc = 40;
cam_left.pos_x = screen_size.x - 150;

if ((cam_view == 1)|| (cam_view == 5))
{

camera.pan=0;
camera.z = 70;
camera.x = left.x;
camera.y = left.y;
//cam_left.visible = off;

wait (1);
}

if ((cam_view == 2)|| (cam_view == 6))
{

camera.pan=15;
camera.z = 70;
camera.x = left.x-70;
camera.y = left.y-60;

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 33

//cam_left.visible = off;

wait (1);
}

if ((cam_view == 0)|| (cam_view == 4))
{

camera.pan=90;
camera.z = 70;
camera.x = ((right.x+left.x)/2);
camera.y = -((right.x-left.x) + 50);
//cam_left.visible = off;

wait (1);
}
if (cam_view > 3){cam_left.visible = on;}
else {cam_left.visible = off;}

}

A little bit of animation

Let us catch the moment when small birds twitter. I craeted a bitmap named ko+5.pcx which
we are going to include now and then display at the right moment.

circling round

We include these lines to define our variables at the beginning of the scenario:

bmap cui_cui_map,<ko+5.pcx>;
var cui_cui_pos = 0;
var cui_cui_x_left;
var cui_cui_y_left;
var cui_cui_x_right;
var cui_cui_y_right;

panel cui_cui_pan
{
 layer = 1;

window = 0,0,84,58,cui_cui_map,cui_cui_pos.x,0;
 flags = d3d,overlay,refresh;
}

Now we are creating a handle for our sound (right after sound definitions), which enables us to
check whether the sound has stopped playing so we can continue:

var larkhandle = 0;

Then we create the function cui_cui which we place at the end:

function show_cui_cui()
{

while (1)
{

cui_cui_pos.x += 84;

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 34

if (cui_cui_pos.x >= 400){cui_cui_pos.x =0;}
waitt (10);

}
}

Then we modify (s p a c e d r e d l i n e s) our function pos_camera as follows:

function pos_camera()
{

cam_left.x = right.x;
cam_left.y = right.y;
cam_left.z = 60;
cam_left.pan = 180;
cam_left.arc = 40;
cam_left.pos_x = screen_size.x - 150;

if ((cam_view == 1)|| (cam_view == 5)) //touche F2
{

camera.pan=0;
camera.z = 70;
camera.x = left.x;
camera.y = left.y;
//cam_left.visible = off;

c u i _ c u i _ x _ l e f t = 3 8 0 ;
c u i _ c u i _ y _ l e f t = 4 0 0 ;
c u i _ c u i _ x _ r i g h t = 1 8 0 ;
c u i _ c u i _ y _ r i g h t = 4 0 0 ;

wait (1);
}

if ((cam_view == 2)|| (cam_view == 6))//touche F3
{

camera.pan=15;
camera.z = 70;
camera.x = left.x-70;
camera.y = left.y-60;
//cam_left.visible = off;

c u i _ c u i _ x _ l e f t = 1 6 0 ;
c u i _ c u i _ y _ l e f t = 3 2 0 ;
c u i _ c u i _ x _ r i g h t = 1 0 0 ;
c u i _ c u i _ y _ r i g h t = 4 0 0 ;

wait (1);
}

if ((cam_view == 0)|| (cam_view == 4))// touche F1
{

camera.pan=90;
camera.z = 70;
camera.x = ((right.x+left.x)/2);
camera.y = -((right.x-left.x) + 50);
//cam_left.visible = off;

c u i _ c u i _ x _ l e f t = 3 8 0 ;
c u i _ c u i _ y _ l e f t = 4 0 0 ;
c u i _ c u i _ x _ r i g h t = 1 8 0 ;
c u i _ c u i _ y _ r i g h t = 4 0 0 ;

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 35

wait (1);
}
if (cam_view > 3){cam_left.visible = on;}
else {cam_left.visible = off;}

}

And we modify our death in consequence:

if (right_action_state== dead)
{

right.frame += time;
right.next_frame = 0;

//son quand touche sol

if (right.frame >= end_right_frame)
{

//left wins
right.frame = end_right_frame ;
i f (l e f t . f r a m e = = s t a r t _ l e f t _ f r a m e)
{

i f (l a r k h a n d l e = = 0) / / l e s o n n ' e s t p a s j o u é
{

p l a y _ s o u n d (l a r k _ s o u n d , 1 0 0) ;
l a r k h a n d l e = r e s u l t ;
c u i _ c u i _ p a n . v i s i b l e = o n ;
c u i _ c u i _ p a n . p o s _ x = c u i _ c u i _ x _ r i g h t ;
c u i _ c u i _ p a n . p o s _ y = c u i _ c u i _ y _ r i g h t ;
s h o w _ c u i _ c u i () ;

}
i f (s n d _ p l a y i n g (l a r k h a n d l e) = = 1) { g o t o f i n ; }
c u i _ c u i _ p a n . v i s i b l e = o f f ;
l a r k h a n d l e = 0 ;

}

if (left.frame == start_left_frame){play_sound (left_win_sound,100);}
left.frame += .3*time;
left.next_frame = 0;
if (left.frame >= end_left_frame)
…

and
if (left_action_state== dead)
{

//if (left.frame >= start_dead+10){play_sound (lark_sound,100);}
right.pan = 0; //pour le salut
left.frame += 1.2*time;
left.next_frame = 0;
//son quand touche sol
if (left.frame >= end_dead)
{

left.frame = end_left_frame;
i f (r i g h t . f r a m e = = s t a r t _ r i g h t _ f r a m e)
{

i f (l a r k h a n d l e = = 0) / / l e s o n n ' e s t p a s j o u é
{

p l a y _ s o u n d (l a r k _ s o u n d , 1 0 0) ;
l a r k h a n d l e = r e s u l t ;
c u i _ c u i _ p a n . v i s i b l e = o n ;

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 36

c u i _ c u i _ p a n . p o s _ x = c u i _ c u i _ x _ l e f t ;
c u i _ c u i _ p a n . p o s _ y = c u i _ c u i _ y _ l e f t ;
s h o w _ c u i _ c u i () ;

}
i f (s n d _ p l a y i n g (l a r k h a n d l e) = = 1) { g o t o r i g h t _ a n i m e ; }
c u i _ c u i _ p a n . v i s i b l e = o f f ;
l a r k h a n d l e = 0 ;

}
//right wins
if (right.frame == start_right_frame){play_sound (right_win_sound,100);}

right.frame += .5*time;

right.next_frame = 0;

A start screen

This screen is going to allow us to choose the player's color. So first of all, we need to create new
skins for our persons. Open MED, export one of our two skins to your favorite paint program.
Now go ahead and create skins of other colors.

I added for my part the following skins (in this order):

red (of origin) = 1
blue (of origin) = 2
grey =3
green = 4
yellow = 5
cyan = 6

If you are not equipped, I also provided this model under the name of fighter1.mdl.

Now it's time to create our panel to give us the choice. Well, here you are:

It consists of 5 elements:

1. The background of the panel (choix.pcx)*
2. A cursor used twice (cursor.pcx)
3. A button 'o.k on' (button_ok_on.pcx)
4. A button 'o.k off' (button_ok_off.pcx)
5. A mouse pointer (pointeur.pcx)

* french version
 take choix_e.pcx for the english panel
 or choiw_d.pcx for the german panel

We define them as follows:

bmap choix_map,<choix.pcx>; // or choix_e.pcx (english version) or choix_d.pcx (german version)
bmap button_ok_on_map,<button_ok_on.pcx>;
bmap button_ok_off_map,<button_ok_off.pcx>;
bmap cursor_map,<cursor.pcx>;
bmap pointeur,<pointeur.pcx>;

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 37

We also define the two variables which will be fed by vslider :

var coul_left=1;
var coul_right=4;

Now we define our panel:

panel choix_pan
{
 layer = 1;
 bmap = choix_map;

button = 33,212,button_ok_on_map,button_ok_off_map,button_ok_off_map,game,null,null;
vslider = 11,90,100,cursor_map,1,3,coul_left;
vslider = 65,90,100,cursor_map,4,6,coul_right;
mouse_map = pointeur;

 flags = d3d,overlay,refresh;
}

According to this definition you can note that:

1 – By clicking the button 'OK', we call the function game()
2 – the left slider toggles through the values 1 - 3 (3 possible skins for our left player)
3 – The right slider toggles through the values 4 - 6 (3 possible skins for our right
 player).

The only thing we are left to do is to put it all to work:

In the main() function, we replace game(); by

choix();

Then we write our function choix().

function choix()
{

choix_pan.pos_x = (screen_size.x/2) -50;
choix_pan.pos_y = (screen_size.y/2) -100;

choix_pan.visible = on;
mouse_mode = 1;
mouse_on();
mouse_spot.x = 18;
mouse_spot.y = 6;
while(mouse_mode != 0)
{

left.skin = int(coul_left);
right.skin = int(coul_right);
alea = random(100);

wait (1);
}

}

The first two lines fix the panel in the center of the screen depending on the resolution. Then we
display the panel and next the mouse. At least we assign the skin color to the left respectively the
right player depent on the value returned by the two sliders.

The random line is an old trick which I allways used if computers had no internal clock. Actually,
you might have raelized it, the random instruction allways gives the same sequence of numbers

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 38

at every execution of the program. In our case we will never spend twice the same time in our
loop. Because the time depends on the moment at which one clicks on OK, we are assured to have
really random random numbers.

Now we quickly include these two lines at the beginning of our function game() and we are
ready to play, using the color of our choice.

mouse_mode = 0;
choix_pan.visible = off;

I leave it to you as an exercise to adapt the color of the health bar. It is identical with the adaption
of the player's color (for the moment, we keep to red and blue).

The audience

As for the audience, I am not going to apply details. I just added 2 hollow cylinders for the stands
and attached an animated texture (in your directory files: +0foule.pcx in +3foule.pcx).

Let the audience comes in

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 39

The result is nevertheless pleasant

The background music

The background music does not make much problems either:

music amb_song = <ambiance.mid>;

// play a song if volume was set at beginning
function start_song()
{

wait(4); // wait until load_info has loaded the last volume setting
if (midi_vol > 0) {

play_song(amb_song,80);
}

}

Type the following line in main() after load_status:

start_song();

Conclusion (2)

This time we're done, I think. There is nothing left, than to say goodbuye...

However, you might think it would be nice if every guy had his own personality that goes with
his color and therefore different reactions. What a stupid idea! Just go ahead...

Well, I feel like helping you a little to grow some more into WED's magnificent world. It's a deal,
but afterwards it's up to you.

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 40

 We are going to make it simple:

• First player :
• The weak one, whose hits deduct only 5 of the opponent's life points and every received

blow makes him loose 5 more points than the oppont in this case. But be so kind to leave
him the chance of a lucky win: we are going to give him a secret boot! So a kick with the
knee is unstoppable and knocks down the opponent. (The kick with the knee replaces the
punch in an unpredictable way: f.i. with a probability of 1 to 10).

•
• Second player:
• the one that we know at present , so we shall change nothing.
•
• Third player:
• the brutal one, every hit causes a deduction of 15 off the oppontnt's life points, received

blows let him loose 5 points less than than the other. He can dodge the kick of a knee by
rapid backward movement.

What gives us:

Blow given by Blow received by Bonus/malus Points of life to be
removed

Weak = 5 points
Weak +5 10
Normal 0 5
Brutal -4 1

Normal = 10 points
Weak +5 15
Normal 0 10
Brutal -4 6

Brute = 15 points
Weak +5 20
Normal 0 15
Brutal -4 11

The hits given by the left player left.skin*5 result in 5 for the weak, 10 for the normal and 15
for the brutal one.
The hits given by the right player (right.skin-3)*5 result in 5 for the weak, 10 for the normal
and 15 for the brutal one.

We create two variables:

var coup_recu_left ;
var coup_recu_right ;

Then we calculate their values: (include these lines at the beginning of the function game())

if (left.skin == 1){coup_recu_left = ((right.skin-3)*5)+5;}
if (left.skin == 2){coup_recu_left = (right.skin-3)*5;}
if (left.skin == 3){coup_recu_left = ((right.skin-3)*5)-4;}

if (right.skin == 4){coup_recu_right = (left.skin*5)+5;}
if (right.skin == 5){coup_recu_right = (left.skin*5);}
if (right.skin == 6){coup_recu_right = (left.skin*5)-4;}

For the haelth points, we simply replace the following blue lines by the red ones:

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 41

if (right_health > 0) {right_health -= 10;}

 if (right_health == 0)
by :

if (right_health > 0) {right_health -= c o u p _ r e c u _ r i g h t ;}

 if (right_health < = 0)

and
if (left_health > 0) {left_health -= 10;}

 if (left_health == 0)

by:
if (left_health > 0) {left_health -= c o u p _ r e c u _ l e f t ;}

 if (left_health < = 0)

and

bmap choix_map,<choix.pcx>;

by:

bmap choix_map,<choix1 .pcx>;

The kicks with the knees:

The right player can kick us with his his knees. Rather than to write a supplementary action, I
prefer to modify the punch action: once of 10 times the punch is replaced by the knee.

At first we create the following variables which we place after the existing ones:

var start_win = 1;
var end_win = 10;
var start_dead = 73;
var end_dead = 88;
v a r s t a r t _ k n e e = 5 6 ;
v a r e n d _ k n e e = 6 4 ;

var pain = 4;
var dead = 5;
var win = 6;
v a r k n e e = 7 ;
v a r k n e e _ s t a t e = 0 ;

Then we add the lines in red:

if ((alea < 15) && (right_action_state== waiting) &&
(left_action_state != dead) && (dist_between_right_left < min_dist_between_right_left + 10))

 {
right_action_state= punching;
start_right_frame = start_punch;
right.frame = start_right_frame;
end_right_frame = end_punch;

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 42

i f ((r a n d o m (1 0) < 1) & & (r i g h t . s k i n = = 4))
{
r i g h t _ a c t i o n _ s t a t e = p u n c h i n g ;
k n e e _ s t a t e = 1 ;
s t a r t _ r i g h t _ f r a m e = s t a r t _ k n e e ;
r i g h t . f r a m e = s t a r t _ r i g h t _ f r a m e ;
e n d _ r i g h t _ f r a m e = e n d _ k n e e ;
}

}
………….

if (left_health > 0) {left_health -= coup_recu_left+ (5 0 * k n e e _ s t a t e) ;}
i f (k n e e _ s t a t e = = 1) { k n e e _ s t a t e = 0 ; }

 if (left_health <= 0)
 {

Concerning the left player we can decide either to do it the same way (replacing punch by kick) or
to add another key to control the kicks. I have chosen the second option and so you can kick with
the knee by hitting the CTRL. -key.

We type the following lines before the right action.

/ / l e f t a t t a c k w i t h k n e e

i f ((k e y _ c t r l = = 1) & & (l e f t _ s t a t e _ a t t a c k _ b l o c k = = 0) & & (l e f t . s k i n
= = 1))

{

i f ((l e f t _ a c t i o n _ s t a t e ! = p u n c h i n g) & & (l e f t _ a c t i o n _ s t a t e ! = w i n)
& & (l e f t _ a c t i o n _ s t a t e ! = d e a d))

{

/ / l e f t = p u n c h i n g

l e f t _ a c t i o n _ s t a t e = p u n c h i n g ;

l e f t _ s t a t e _ a t t a c k _ b l o c k = 1 ; / / a t t a c k i n g

k n e e _ s t a t e = 1 ;

s t a r t _ l e f t _ f r a m e = s t a r t _ k n e e ;

l e f t . f r a m e = s t a r t _ l e f t _ f r a m e ;

e n d _ l e f t _ f r a m e = e n d _ k n e e ;

}

}

i f ((k e y _ c u u = = 0) & & (l e f t _ s t a t e _ a t t a c k _ b l o c k = = 1
)) { l e f t _ s t a t e _ a t t a c k _ b l o c k = 0 ; }

//here right action

---------- - - - - -- - - --- -

Then we are going to modify these lines:

3D Gamestudio WDL Workshop Fighting © Conitec August 2001 43

if (right_health > 0) {right_health -= coup_recu_right+ (2 0 * k n e e _ s t a t e) ; }
 i f (k n e e _ s t a t e = = 1) { k n e e _ s t a t e = 0 ; }

 if (right_health <= 0)
 {

Conclusion (3)

Actually wa are done for real! At last we say goodbuye...

And after a well playing game What else is there to do?

• Establish a high score list to compete against your friends or family.

• Show impact points by using particles

• Vary the animation speed according to the the player's force: a weak character has slower
motions than a strong one.

• The same applies to the sound: it should be proportional to the player's force as well.

• Etc.

let the fight begin!

PS: you will find the complete files of scenario under the name of fighting.al1 .

