
3D Gamestudio Workshop Special Effects © Conitec März 2002 1

3D GameStudio

Workshop
Special Effects

rev: 1.31

for A5 Engine 5.1
by Dan Niezgocki / Conitec March 2002

The latest news, demos, updates and tools, as well as the Users' Magazine, the Users' Forum and
the annual Contest are available at the GameStudio main page http://www.3dgamestudio.com.

3D Gamestudio Workshop Special Effects © Conitec März 2002 2

Contents
Foreword ___ 3

Using time __ 3

Alpha glow __ 3

Lights __ 7

Particles __ 9

Explosions __ 13

Sky Spheres ___ 15

Smoke __ 16

Advanced ___ 20

Appendix A - Usage ___ 21
Assigning the action __ 21
Skill/Flag definitions & defaults ___ 22

Light __ 22
Alpha_glow __ 23
Test_gib ___ 23
Fire1 __ 23
Starsphere ___ 23
Window ___ 23
Gem __ 23
Smoker __ 23

Appendix B - Credits ___ 23

3D Gamestudio Workshop Special Effects © Conitec März 2002 3

Foreword

elcome to my Special Effects workshop! This effects workshop will walk you through the
creation of many effects and leave you with the knowledge of WDL effects and new

features of A5.1 to make your own amazing effects!
W
This workshop is intended for use with A5, a A4 version can be found in the Acknex Interactive
download section.
(http://acknexinteractive.fws1.com/download.htm)

By writing this workshop I send a word of encouragement to you, that this won't be the furthest
you go and you create great new effects for your games without any trouble.

Greetings,
Nizzy

Using time

Before starting, I will explain the usage of time. By simply setting everything the same, your
coding will be dependant on the frame rate. Such as:

while(1)
{

my.alpha -= 5;
wait(1);

}

To overcome this, we can use the time engine-variable. It represents the time between the frame
change. Most the time > 1 except on slower machines. Therefore, by multiplying the number by
time you can achieve smoother effects that don’t depend on the frame rate.

while(1)
{

my.alpha -= 5 * time;
wait(1);

}

Alpha glow

Now, we will include a glowing gem in our level that will add to the player’s health. But we don't
want it to emit light, instead we will make it transparent and make the "clearness" increase and
decrease to get a glowing effect. To do this we will be using the transparent flag and the alpha
value. The transparent flag sets the entity to be semi-opaque and the alpha value tell you just
how opaque it should be, 100 being opaque and 0 being invisible. Lets start out with this:

action gem
{

if (my.skill5 == 0) {my.skill = 25; }
my.event = medi_pickup;
item_pickup();

}

This is the same code used for the medi packs. Now we can add our "glowing" code like so.

3D Gamestudio Workshop Special Effects © Conitec März 2002 4

action gem
{

if (my.skill5 == 0) {my.skill5 = 25; } // default +25 health
if (my.skill3 == 0) {my.skill3 = 75; } // default 75 max opaque
if (my.skill2 == 0) {my.skill2 = 25; } // default 25 max transparency
my.event = medi_pickup;
my.transparent;// make it sensitive to the alpha value
item_pickup();
while (1)
{

// We want it to keep glowing, not just once.
while (my.alpha <= my.skill3)
{

my.alpha += time; // make it more opaque
wait(1);

}
while (my.alpha >= my.skill2)
{

my.alpha -= time; // make it more transparent
wait(1);

}
}

Now doesn't that look nice! Lets try making a flare effect now.
Well, lets go over the way a flare works first. A flare is attached to lights, and becomes larger the
further you are away from it and smaller the closer you are. For this flare we will use a simple
circular flare using the flare transparency flag.

var flare_var = 0;

action light_flare
{

my.flare = on;
my.red = your.red;
my.green = your.green;
my.blue = your.blue;
my.light = on;
my.lightrange = 0;
my.passable = on;
my.facing = on;
my.near = on;
while (1)
{

flare_var = vec_dist(player.x,my.x);
IF (flare_var > 2000)
{

flare_var = 2000;
}
my.scale_x = (flare_var / 900 + 0.5);
my.scale_y = (flare_var / 900 + 0.5);
if (flare_var < 30)
{

my.invisible =on;
}
else
{

my.invisible = off;
}
wait(1);

}
}

3D Gamestudio Workshop Special Effects © Conitec März 2002 5

Okay, this looks great! It is clipped if it is partially blocked by another surface. Lets add a
my.near to it now. Here is the final code:

var flare_var = 0;

action light_flare
{

my.flare = on;
my.red = your.red;
my.green = your.green;
my.blue = your.blue;
my.light = on;
my.lightrange = 0;
my.passable = on;
my.oriented = on; // will now be facing according to its pan, tilt and roll to get a better

// facing effect using me_on_player()
my.near = on; // reduce clipping
while (1)
{

me_on_player();
flare_var = vec_dist(player.x, my.x);

flare_var = min(flare_var,2000); //optimized, don’t allow < 2000
my.scale_x = (flare_var / 900 + 0.5);
my.scale_y = my.scale_x; // small optimization (scale_x = scale_y always)
if (flare_var < 30)
{ }
else
{

my.invisible = off;
}
wait(1);

}
}

function me_on_player() {
// keep me facing the player
vec_set(temp,player.x);
vec_sub(temp,my.x);
vec_to_angle(my.pan,temp);

}

Now it is just the way we want it for our level! Lets move on to some glass effects!

To close this section of the workshop we will create a breaking window using alpha
transparency.
Our breaking window will act like real glass; it shouldn't break on the first hit all the time. To do
this we will use the _health skill used for enemies in war.wdl. Lets look at our action first:

action window
{
 my.transparent = on;
 my._health = 50;
 my.event = glass_hit;
 my.enable_shoot = on; //sensible to bullets
 my.enable_scan = on; //sensible to explosions
 my.push = 10; //pass through anything with <10 push
 while (1)
 {
 my.alpha = 100 - my._health; //It will get more opaque the more damage, and look

3D Gamestudio Workshop Special Effects © Conitec März 2002 6

 // cloudier (under stress).
 }
}

This will set the health of the window to 50 and it will have 50% transparency to start with and get
more opaque the more damage it takes. Now lets look at the event function and particle function
which will be placed above the action:

function glass_hit();
{

if (event_type == event_scan){ if (indicator != _explode) && (indicator != _gunfire)
{end;}} // exit if not a gunshot or explosion

my._health -= damage; //subtract damage caused by explosion or bullet.
if (my._health <= 0)
{

glass_gib(10);
remove(me);

}
}

function glass_gib(numberOfParts)
{

temp = 0;
while(temp < numberOfParts)
{

create(<glass.mdl>, my.pos, _gib_action); // use gib_action in war.wdl
// to animate the glass
// gibs, makes them bounce and spin

temp += 1;
 }

}

Now the window will shatter into 10 glass gibs that fade out after a while when destroyed.

Here is the final code:

function glass_hit();
{

if (event_type == event_scan){ if (indicator != _explode) && (indicator != _gunfire)
{end;}} // exit if not a gunshot of explosion

my._health -= damage; //subtract damage caused be explosion or bullet.
if (my._health <= 0)
{

glass_gib(10);
remove(me);

}

3D Gamestudio Workshop Special Effects © Conitec März 2002 7

}

function glass_gib(numberOfParts)
{

temp = 0;
while(temp < numberOfParts)
{

create(<glass.mdl>, my.pos, _gib_action); // use gib_action in war.wdl to
//animate the glass gibs,
// makes them bounce and spin

temp += 1;
 }
}

action window
{
 my.transparent = on;
 my._health = 50;
 my.event = glass_hit;
 my.enable_shoot = on; //sensible to bullets
 my.enable_scan = on; //sensible to explosions
 my.push = 10; //pass through anything with <10 push
 while (1)
 {
 my.alpha = 100 - my._health; // It will get more opaque the more damage,

// and look cloudier (under stress).
 }

}

Lights

The first thing in lighting is figuring what you want the light to do. In this workshop, we will do
fire lighting and a broken light that flickers. We will start with the fire.

Okay, we will have the lighting use its skill4 for the light distance and add a random skill5
for the intensity. The light color will be set by skill1-3 and it will execute forever so we will be
using the while loop. Lets start out simple:

action fire
{

my.red = my.skill1;
my.green = my.skill2;
my.blue = my.skill3;

while (1)
{

my.lightrange = my.skill4 + random(skill5);
wait(1);

}
}

The red, green, blue are set to skill1-3 like we planned on. And the lightrange sets the
distance of the light emitting from the entity, so we set it to a minimum of skill4 and add up to
skill5 to create a random flicker of light distance. Then we wait one frame and repeat.

Now, I've created a new level with only a large hollow block textured with #default and added
a torch.mdl (included in this zip) and attached the action fire to it and it does NOTHING!
Why is this?! This was because I didn't enter any values in for skill1-5! To prevent this, we
should add some default values, but how? Lets try this:

3D Gamestudio Workshop Special Effects © Conitec März 2002 8

action fire
{

if (my.skill1 == 0) { my.skill1 = 155; }
if (my.skill2 == 0) { my.skill2 = 55; }
if (my.skill3 == 0) { my.skill3 = 0; } //orange light
if (my.skill4 == 0) { my.skill4 = 300; }
if (my.skill5 == 0) { my.skill5 = 100; }

my.red = my.skill1;
my.green = my.skill2;
my.blue = my.skill3;

while (1)
{

my.lightrange = my.skill4 + random(skill5);
wait(1);

}
}

Now, before doing anything it check if any of the skills are set to 0, if they are, it will set them to
the default value! Now after simply running the level again, I get a fire-like flickering red light just
like real life! But it lacks one thing. Variation. Lets try changing the color a little each time, darker
the shorter the lightrange, the brighter the longer the lightrange.

action fire
{

if (my.skill1 == 0) { my.skill1 = 225; }
if (my.skill2 == 0) { my.skill2 = 140; }
if (my.skill3 == 0) { my.skill3 = 55; } //red light
if (my.skill4 == 0) { my.skill4 = 70; }
if (my.skill5 == 0) { my.skill5 = 100; }
my.red = my.skill1;
my.green = my.skill2;
my.blue = my.skill3;

while (1)
{

my.lightrange = my.skill4 + random(my.skill5);
my.red += random(my.skill6)-(my.skill6 / 2);
my.green += random(my.skill7)-(my.skill7 / 2);
my.blue += random(my.skill8)-(my.skill8 / 2);
wait(1);

}
}

THERE! It looks perfect. Now it adds or subtracts up to half of skill6-8 from the RGB value.

Now for the busted flickering light. We will have it off for a random amount of time and then
flicker on for a smaller random time.

var light_var;

action light_flicker
{

if (my.skill1 == 0) { my.skill1 = 155; }
if (my.skill2 == 0) { my.skill2 = 55; }
if (my.skill3 == 0) { my.skill3 = 55; } //red light
while (1)
{

// light on

3D Gamestudio Workshop Special Effects © Conitec März 2002 9

my.red = my.skill1;
my.blue = my.skill2;
my.green = my.skill3;
my.ambient = 100;
my.lightrange = 150;
light_var = random(8);
wait(light_var);

// light off
my.ambient = 0;
my.lightrange = 0;
light_var = random(16);
wait(light_var);

wait(1);
}
}

Light_var is set to a random value used for the wait instruction up to16 for the off time and
up to 8 for the on time. I think that looks pretty good!

Particles

Before starting this tutorial section I would like to thank Gaehh. His tutorial helped me learn the
things that make these particles look so great, I didn't know about the bright flag or about the
my_pos_x etc. I thought it only had my_speed_x etc. the my_pos_x etc. will be used in future
effects and tutorials. THANKS GAEHH.

Okay, lets start simple: bleeding.

Our particle function will be almost the same as particle_scatter, and will use many great
new features of the engines particle system. In this tutorial I will also explain everything I can
about each flag to help you create better effects!

my.bright-
The particles will be brighter in areas that have overlapping particles to create a glow or fire
effect.

3D Gamestudio Workshop Special Effects © Conitec März 2002 10

my.transparent-
The particles will assume alpha transparency and use the my.alpha value to set the % of
transparency, if null, the particles will be 50% transparent.

my.lifespan-
The particles will live until my.lifespan = 0, lifespan will decrease over the particles life
automatically. Set to 0 to kill the particle..

my.flare-
The particles will be transparent like with my_transparent but the darker areas will be more
transparent while the lighter areas of the particle more opaque.

my.alpha-
 Setting for % of transparency of particles, 100% is opaque and 0% is clear.

my.function-
Set to null to continue the particle life until my.lifespan = 0;.

All right, lets start the scripting!
Lets start with the action:

var firevar;

action fire1
{

if (my.skill1 == 0) { my.skill1 = 8; }
while (1)
{

firevar = my.skill1; // sets the # of particles to be released.
effect(particle_fire,firevar * time,my.x,nullvector); // emit the particles

// from my.x using the
// new effect command (A5)

wait(1);
}

}

This action is just like any other particle action except for the fact it implements skills that
interact with the effect part. To do this, you have to copy the skill to a var. and use the var
in the effect command.

Now we will create the function:

bmap fire_map1 = <light.bmp>;
var firevar2,1;

function vec_fire(&vec)
{

vec[0] = random(30) – 15;
vec[1] = random(30) – 15;
vec[2] = random(10);

}

function particle_fire()
{

vec_fire(temp);
vec_set(my.vel_x,temp);
my.lifespan = 15;
my.flare = on; //flare transparency
my.bright = on; //glowing effect

3D Gamestudio Workshop Special Effects © Conitec März 2002 11

my.move = on; //move according to vel_x, vel_y, and vel_z
my.streak = on; //new streak effect
my.bmap = fire_map1;
my.alpha = 20;
my.size = 500;
my.function = null; //no mid-life mods yet!

}

Wow, doesn't that look BAD However, this is only the framework for a very advanced particle
script with a great outlook on real fire "physics”Lets make it less "out". How about a nice curve at
the bottom making it go straight up eventually.

function fire_func()
{

my.vel_x == my.vel_x * 0.5;
my.vel_y == my.vel_y * 0.5;

}
//also change the “my.function = null;” in particle_fire to “my.function = fire_func;”

Now we are cutting the x and y speed in half each frame, this will result in never reaching 0 speed
for either, but it won't change the performance (it will get to 1 then .5,.25,.125,.0625 and so on).

Now the top is even, we want it pointed. This is where the strange outlook on fire "physics" comes
in. Rather than making all sorts of formulas that cause the tip to be pointed, we will use a heat
idea. If a particle is too far from the center of the fire it will die because it is colder. It will also
move slower because it has less heat to rise. SO, that means we will only have to modify
my.vel_z, as you will see. The speed will be set lower, the further the x and y speeds are from 0
(the center). Then the particle will die before it reaches the tip causing the center particles to be
highest forming a tip! This is easier than you think!

function vec_fire(&vec)
{

vec[0] = random(30) – 15;
vec[1] = random(30) – 15;
vec[2] = random(10) – (abs(my.vel_x) + abs(my.vel_y)) * 0.3 + random(5);

}

Lastly we want to test what graphics look best.

 function fire_func()
{

my.vel_x = my.vel_x * 0.5;
my.vel_y = my.vel_y * 0.5;
my.alpha -= 2 * time; //fade out gradually
if(my.alpha < 0) { my.lifespan = 0; } // kill when alpha < 0
if (firevar2 == 1) { my.bmap = firemap1; }
if (firevar2 == 2) { my.bmap = firemap2; }
if (firevar2 == 3) { my.bmap = firemap3; }
if (firevar2 == 4) { my.bmap = firemap4; }

}

function firechange()
{

firevar2 += 1;
if (firevar2 == 5) { firevar2 -= 4; }
wait(1);

}

on_t firechange;

3D Gamestudio Workshop Special Effects © Conitec März 2002 12

Now press T to change the graphics!

Lastly, we will make a particle fountain like in the Adeptus demo, starting with the function first:

bmap fountain_map = <sparkle.bmp>;

function vec_fountain(&vec)
{

vec[0] = random(6) – 3;
vec[1] = random(6) – 3;
vec[2] = random(10) + 20;

}

function particle_alpha_fade()
{

my.alpha -= time * 2; // stay with framerate
if(my.alpha < 0) { my.lifespan = 0;}

}

function particle_fountain()
{

vec_fountain(temp);
vec_set(my.vel_x,temp); //set the velocity
my.lifespan = 50;
my.flare = on; //flare transparency
my.bright = on; //glowing effect
my.move = on; //move according to vel_x, vel_y, and vel_z
my.streak = on; //new streak effect
my.bmap = fountain_map;
my.gravity = 3;
my.alpha = 50;
my.size = 10;

3D Gamestudio Workshop Special Effects © Conitec März 2002 13

my.function = particle_alpha_fade; //fade out near end of life
}

This is almost the same function (only adapted to A5 particles!!), but look at what’s changed. I
removed all the old SET instructions and replaced them with simple variable definitions and the
alpha_fade function. Also, the particles will fade out, rather than just disappearing. Now we
will see how it all works. The my.vel_x and my.vel_y make it go a maximum of 10 in either
direction. The my.vel_z makes it move up at least 20, but less than 30. my.size defines the size
of the particles. my.alpha is set to opaque (100) and fades out as its life goes on. my.flare
makes the particle less opaque in darker areas. Lastly, my.lifespan = 50 kills the particle if it
is older than 50.

Explosions

Explosions are common and everyone's look different, but I'll give you a start on it. Our explosions
will be mostly the animation sprite, but we'll add some other effects. We will use the explosion
sprite from MISSION2 as well.

Now lets start with the sprite animation:

action explode1
{

my.facing = on; // face the camera
my.near = on;
my.flare = on;
my.passable = on; // don't push the player through walls
my.frame = 1;
my._dieframes = 16;
wait(1);

play_entsound(my,explo_wham,1000);
my.red = 210;
my.green = 100;
my.blue = 100;
my.ambient = 100;
my.lightrange = 110;

// use the new sprite animation
while(my.frame < my._dieframes)
{

wait(1);
my.lightrange += 15;
my.red += 20 * time; // fade to red // stay with framerate
my.blue -= 20 * time; // stay with framerate
my.frame += time; // stay with framerate

}
wait(1);
ent_remove(my);

}

Lets try some particles:

bmap explo_map = <expl.bmp>;

3D Gamestudio Workshop Special Effects © Conitec März 2002 14

function vec_explode(&vec)
{

vec[0] = random(6) – 3;
vec[1] = random(6) – 3;
vec[2] = random(10) + 20;

}

function explosion_func()
{

if(my.lifespan > 30) { my.alpha += 3 * time; } // stay with framerate
if(my.lifespan <= 30) { my.alpha -= time; }

}

function particle_explo();
{

vec_explode(temp);
vec_set(my.vec_x,temp);
my.flare = on;
my.bright = on;
my.move = on;
my.streak = on;
my.bmap = explo_map;
my.gravity = 6;
my.alpha = 30;
my.size = random(50) + 50; // 50-100
my.lifespan = 50;
my.function = explosion_func;

}

And add an effect to explode1.

action explode1
{

my.facing = on; // face the camera
my.near = on;
my.flare = on;
my.passable = on; // don't push the player through walls
my.frame = 1;
wait(1);

play_entsound(my,explo_wham,1000);
effect(particle_explo,50 * time,my.x,nullskill);
my.red = 210;
my.green = 100;
my.blue = 100;
my.ambient = 100;
my.lightrange = 110;

// use the new sprite animation
while(my.frame < my._dieframes)
{

wait(1);
my.lightrange += 15;
my.red += 20 * time; // fade to red // stay with framerate
my.blue -= 20 * time; // stay with framerate
my.frame += time; // stay with framerate

}
wait(1);
ent_remove(my);

}

3D Gamestudio Workshop Special Effects © Conitec März 2002 15

Now test it out!

Sky Spheres

This introduces you the use of skyspheres similar to the ones used in the Spaceflight workshop but
for shooters, arenas and the like. An example is Unreal Tournaments space arenas like Facing
Worlds. This allows for really cool space station levels where the sky textures look bad. We will
start with the graphical part.

1. Open MED.
2. Create a large sphere, you can make a better one in milkshape and import it, it looks better

in high-poly, MEDs subdivide doesn't do the trick.
3. Now texture it with a star texture or whatever your sky it supposed to look like.
4. Make it large enough to enclose your entire level (that's really big)
5. Now, you will be inside it, so the texture has to be on the inside! Switch to triangle mode

and select all triangles.
6. Click the flip normals button and save it as stars.mdl or something like that.

Now we have an easy script to make:

action starsphere
{

3D Gamestudio Workshop Special Effects © Conitec März 2002 16

while(1)
{

my.pan += 0.5 * time;
my.tilt += 0.5 * time;
wait(1);

}
}

If you want you can leave it without an action, the action just makes it look like your station or
platform is spinning slowly in space.

Smoke

Whether its a smoking rocket launcher or a blazing fire, you are going to use smoke in your game,
and I'm sure the templates paritcle_smoke isn't exactly what you call "Commercial Quality".
So, lets make our own, but first, lets take a look at the template one.

function vec_smoke(&vec)
{

vec[0] = random(1) – 0.5;
vec[1] = random(1) – 0.5;
vec[2] = random(1) + 1;

}

function smoke_func()
{

if(my.size < 800) { my.size += time; }
my.vel_x = my.vel_x / 2;
my.vel_y = my.vel_y / 2;

}

function particle_smoke()
{
vec_smoke(temp);
vec_set(my.vel_x,temp);
my.size = random(5)+5; // 5 to 10 in size
my.bmap = smoke_map2;
my.flare = on;
my.lifespan = 100;
my.alpha = 50;
my.move = on;
my.function = smoke_func;

3D Gamestudio Workshop Special Effects © Conitec März 2002 17

}

Okay, this doesn't look so bad after all. It just needs a little fixing. First, the smoke sprite looks like
crap. Lets try the one from MISSION2.

This looks a little dark, but it looks light enough when the black is clipped and flare
transparency is on. Now our smoke almost looks real, see how much the graphics can
change a whole effect? But they just float up and BANG they disappear, lets try fading
them out.

function smoke_func()
{
if(my.size < 800) { my.size += time * 0.1; }
my.alpha -= 2.1 * time;
if(my.alpha < 0) { my.lifespan = 0; }
my.vel_x = my.vel_x / 1.2;
my.vel_y = my.vel_y / 1.2;

}

Now we are subtracting 2.1 alpha each frame and making it fade out as it expands to a bigger
size. Isn't that amazing? Now try coding your own from scratch! If you need help look at the
particle section.

Gibbing!!

Oh yay! The wonderful GIBBING SCRIPT!!! This discusses the basic gib modifications I made to
the one that is in war.wdl.

If you think it looks great, wait 'till you hear this I probably only modified a few lines of code to
do it, but I had to get them all perfect so it looks exactly like it does.

The first thing was making some particles for blood.

bmap blood_map = <blood.bmp>;

function fade_func()
{

my.alpha -= my.skill_x * time;
if(my.alpha < 0) { my.lifespan = 0; }

}

function vec_blood(&vec)
{

vec[0] = random(20)-10;
vec[1] = random(20)-10;
vec[2] = random(20)+10;

}

3D Gamestudio Workshop Special Effects © Conitec März 2002 18

function particle_blood
{

vec_blood(temp);
vec_set(my.vel_x,temp);
my.move = on;
my.streak = on;
my.flare = on;
my.size = 10;
my.alpha = 65;
my.bmap = blood_map;
my.lifespan = 35;
my.skill_x = 2;
my.gravity = 6;
my.function = fade_func;

}

Hmmm... look familiar? Perhaps the scatter_speed would give you a clue! IT’S THE
PARTICLE_SCATTER CODE! I just changed a few minor things.

my.bmap is now blood_map.
my.flare is enabled now.

Now I need use effect to release the particles from the body_gib_action.

function _body_gib_action()
{

// scall the bits down by the actor_scale amount
if (gibnow >= gibmax) { ent_remove(my); end; }
gibnow += 1;
vec_scale(my.SCALE_x,actor_scale);
my.enable_block = on;

// Init gib bit
my._speed_x = 15 * (RANDOM(10) - 5); // -125 -> +125
my._speed_y = 15 * (RANDOM(10) - 5); // -125 -> +125
my._speed_z = RANDOM(35) + 15; // 15 -> 50
my._aspeed_pan = RANDOM(35) + 5; // 35 -> 70
my._aspeed_tilt = RANDOM(35) + 5; // 35 -> 70
my._aspeed_roll = RANDOM(35) + 5; // 35 -> 70
my._force = 0;
my.roll = RANDOM(180); // start with a random orientation
my.pan = RANDOM(180);
my._force = -2;
my.push = -1; // allow user/enemys to push thru

abspeed[0] = 5 * my._speed_x;
abspeed[1] = 5 * my._speed_y;
abspeed[2] = my._speed_z * time * 5;
move(me,nullskill,abspeed); //move them away from the gib point so we don't get

 // floating blood splats

// Animate gib-bit
my.skill9 = 50;
while(my.skill9 > -75)
{

abspeed[0] = my._speed_x * time;
abspeed[1] = my._speed_y * time;
abspeed[2] = my._speed_z * time;
my.pan += my._aspeed_pan * time;
my.tilt += my._aspeed_tilt * time;
my.roll += my._aspeed_roll * time;

3D Gamestudio Workshop Special Effects © Conitec März 2002 19

vec_scale(absdist,movement_scale); // scale absolute distance by movement_scale
move(me,nullskill,abspeed);
effect(particle_blood,bloodlevel * time,my.x,nullskill);
if(bounce.z)
{

create(<blooda.bmp>,my.x,blood_spat);
my._speed_z = -(my._speed_z/2);
if(my._speed_z < 0.25)
{

my._speed_x = 0;
my._speed_y = 0;
my._speed_z = 0;
my._aspeed_pan = 0;
my._aspeed_tilt = 0;
my._aspeed_roll = 0;

}
gibvar = bloodlevel * splatlevel;
effect(particle_blood,gibvar * time,my.x,nullskill);
// my.skill9 -= 100;

}
my._speed_z -= 2;
my.skill9 -= 1;
wait(1);
}
my.passable = on;
// Fade out
my.transparent = on;
my.alpha = 100;
while(1)
{

my.alpha -= 5*time;
if(my.alpha <=0)

{
// remove
gibnow -= 1;
ent_remove(my);
return;
}

wait(1);
}

}

I added an effect in the while statement so it would constantly be dripping blood as the gib flies
through the air. Also an effect to emit more blood when it bounces. Also
create(<blooda.bmp>,my.x,blood_spat); was added to leave splat decals on walls. using
the blood_splat function.

function blood_spat()
{

scan_sector.pan = 360;
scan_sector.roll = 360;
scan_sector.tilt = 360;
my_angle.pan = my.pan;
my_angle.tilt = my.tilt;
scan(my.x,my_angle,scan_sector);

if(bullet_hole_counter <= kmaxbullethole && you != player)
{

bullet_hole_counter += 1; // inc bullet hole counter
my.transparent = on;
my.passable = on;
my.oriented = on;
vec_to_angle(my.pan,normal); // rotate to target normal

3D Gamestudio Workshop Special Effects © Conitec März 2002 20

waitt(160); // time blood stays before vanishing, wait a fixed
//amount of time with waitt(160), rather than 160 frames with wait(160)

while(my.alpha > 0) // fade out
{

my.alpha -= time;
waitt(1);

}
bullet_hole_counter -= 1; // decrease bullet hole counter
ent_remove(my);

}
else
{

ent_remove(my);
}

}

Using the kmaxbullethole var used for maximum bullets in the level I also included blood
splats as bullet holes. It is very similar to the bullet hole function. Also, rather than using
wait(160) I used waitt(160). I this way the splats last 160 ticks, a fixed amount of time; rather than
160 frames, a varying amount of time.

Advanced

Now that you have gone over the whole tutorial you may want more advanced things. This is
where you get to do you own scripts until my next tutorial. I hope you learned a lot from this
tutorial and are now able to make your own scripts. I'll see your contributions on the User Forum!

3D Gamestudio Workshop Special Effects © Conitec März 2002 21

Farewell,
Nizzy

Appendix A - Usage

To use these effects, you simply include effects.wdl in your games main script, assign the
corresponding action to the desired entity in WED, and set the skills and flags to further
customize the effect.

Including effects.wdl

Create an new level. Now click File > Map Properties. Click on the new button next to the WDL
script to create your new script. Now open the file in wordpad or any WDL editor. Add include
<effects.wdl>; at the bottom of the include list. Now the effects will be in your action menu.

Assigning the action

Open WED and create a new level or open an existing one.
Now add an entity and right click it in the object browser and
select Properties.

This will open the properties
window, go to the behavior tab and
click on the open button next to the
action entry line.

3D Gamestudio Workshop Special Effects © Conitec März 2002 22

This will display a list of all the
actions included in your games
script.

Select whichever effect you like and
click OK.

Now you can customize the effect by
setting the skills and flags.

Skill/Flag definitions & defaults

Note: The script may differ from the effects created in this workshop, but is made for a more
general purpose. The effects made in this workshop were made customized so you can learn how
to customize them to fit your game.

Light
Flag1 = flame-light

skill1-3 = red-green-blue light color (155,55,55)
skill4 = light distance (300)
skill5 = flame intensity (100)

flag2 = busted-light
skill1-3 = red-green-blue light color (155,55,55)

3D Gamestudio Workshop Special Effects © Conitec März 2002 23

Alpha_glow
skill1 = min. alpha transparency (25)
skill2 = max. alpha transparency (75)
skill3 = glow speed (5)

Test_gib
No skills or flags, used for testing the gibs

Fire1
skill1 = intensity (8)

Starsphere
No skills or flags, used for a skysphere model

Window
No skills or flags, attach to a window sprite and it will weaken and shatter when shot in the game.

Gem
skill1 = alpha value (100)

Smoker
No skills or flags, used for a short pillar of smoke.

Appendix B - Credits

Credits-

Game engine design- Conitec
WDL Script- Dan Niezgocki
Graphics- Dan Niezgocki
Graphics- Conitec
Particle help etc.- Gaehh

Special thanx- All those who gave ideas on the user forum, you are who made this possible!
Special thanx- Doug Poston, great support and help.
Very Special thanx- JCL, for your time, patience and everything else.

