
 1

Light Mixer C-Script Version 1
For A6 Game Studio

Version 6.20

By George Schneider

Welcome brave programmer. If you haven’t already done it, you might want to refer back to matTut1,
the tutorial that describes how to use the Light Mixer Control Panel to study A6 lighting effects.

In this tutorial we are going to look at how to program the Light Mixer Control Panel in C-Script. It is
actually a fairly straight forward program, except that it uses a very important programming concept
called pointers. In some earlier versions of 3DGS they were called synonyms, but they are now being
referred to by the more common computer term of pointers.

Pointers are somewhat hard to grasp, so I’ve written an introductory section on pointers and how they
work. If you are already an advanced programmer and understand pointers, then skip right down to
section 2 and see how Light Mixer is put together. If you are a programming wizard, and prefer reading
code more than manuals, then you can skip this whole tutorial, and just open up lmx.wdl and and look
through it. It has plenty of comments to help explain what is going on in the code.

I hope you find this useful in your own game development…

giorig3@mchsi.com

 2

Section 1 - The nuts and bolts of using ‘Pointers’ in Light Mixer

Well, I am glad someone decided to look at this sec tion.

I am going to take you back to the dark ages, when men were men, and programmers wrote in
assembly language. We used to worry a lot about mem ory back then, especially where things
were in it.

Let’s pretend we need to create a material structur e in memory called myMat, that has 6
variables assigned to it, ambient_red, ambient_gree n, ambient_blue, diffuse_red,
diffuse_green, and diffuse_blue.

(NOTE: There are more than 6 variables available fo r a REAL material structure in A6, and
who knows what else. This is just fictional example of how pointers work.)

Let’s also assume each variable occupies 1 word (8 bytes, 32 bits) of memory. Let’s
define our structure like this:

Material MyMat
{
 ambient_red = 255;
 ambient_green = 135;
 ambient_blue = 1;
 diffuse_red = 75;
 diffuse_green = 100;
 diffuse_blue = 200;
}

So let’s look at how the computer would see this:

Here we have a Material structure in memory. Each l ine represents a word of memory. The
number to the right is the word position in memory. The computer has assigned the
locations for us. myMat starts at word 1000 and goe s for 6 words, through word 1005. The
text is simply a label (variable name) for us human s to be able to reference. By the time
you have compiled your program, the computer no lon ger cares about the variable names, it

 3

is strictly working with the word addresses and num bers. The numbers in the shaded area
represents the value that we assigned to the variab les as they are stored in memory.

So if we want to get the value of the variable diff use_red, and put it in another
variable, we would do something like this:

Var myNewVariable;
myNewVariable = myMat.diffuse_red;

And how would this look in memory? Like this:

The computer assigned another word of memory (1006) to the variable myNewVariable, and
then moved the contents of word 1003 to the word 10 06. Ok, that seems simple enough.

 4

So now let’s declare a pointer. In C-Script we decl are a material pointer like this:

material* myMat0_ptr = myMat;

This says to the computer, create a material pointe r called myMat0_ptr and have it point
to myMat.

Based on the above statement, memory would now look like this.

Again the computer created a new variable (myMat0_p tr), assigned it to memory location
1007, and loaded it with the value 1000. Where did it get the value 1000 for myMat0_ptr?
Let’s break down the statement:

material* myMat0_ptr = myMat;

material* says we are declaring a material pointer, not a mat erial structure.
myMat0_ptr defines the variable name of our pointer
 = myMat says load our pointer with the ADDRESS of myMat

When we load a pointer with a value, we are telling the computer that we want the word
address (i.e. 1000) of the variable loaded into our pointer, not the variable’s value
(i.e. 255). The pointer now POINTS to the same addr ess as myMat. Why would we want to do
this? We do this because it gives us a GENERIC way of referencing myMat. We can now write
a routine that can reference myMat or any other mat erial structure. This is a very
important concept we are going to use a lot in the Light Mixer code.

 5

Let’s write a little routine that does something to myMat structure. Its job will be to
switch ambient_green with diffuse green and then in crease the value of ambient_blue by
50. Let’s do it without pointers first, and then wi th pointers. In this example I’ve
commented each line.

Function swapMaterial ()
{
 var local1; // declare a local variable
 local1 = myMat.ambient_green; // save ambient_gree n in local1
 myMat.ambient_green = myMat.diffuse_green; // move diffuse_green to ambient_green
 myMat.diffuse_green = local1; // move our saved a mbient_green to diffuse_green
 myMat.ambient_blue += 50; // increase ambient_b lue by 50;
}
.
.
.
swapmaterial (); // call our routine to swap myMat material.

Ok easy enough right. Based on the picture above, myMat.ambient_green would become 100,
myMat.diffuse_green would become 135 , and myMat.ambient_blue would become 51 . The
contents of local1 are not relevant because it is a temporary local variable and goes out
of scope when the function exits.

But what if we decide we have another material that we want to do the same thing to. Well
using this style of coding we would have to write a nother function to do it, because our
function specifically references myMat. No big deal right? What if this routine was
hundreds of lines long. What if we had 100 material structures that we want to change in
this way. Get the idea.

A pointer solves this problem for us nicely. Here i s how we could code this routine using
pointers. We need to define another pointer for our generic swap routine.

Material* genMat_ptr; // declare a new material poi nter

Then we use the new pointer to reference out fields .

Function swapMaterial()
{
 if (genMat_ptr == null) // null pointer protecti on
 {return;}
 var local1; // declare a local variable
 local1 = genMat_ptr.ambient_green;
 genMat_ptr.ambient_green = genMat_ptr.diffuse_gree n;
 genMat_ptr.diffuse_green = local1;
 genMat_ptr.ambient_blue += 50;
}
.
.
.

 6

Except for the extra if statement, it looks about t he same doesn’t it. We have simply
changed myMat to genMat_ptr in this routine. So why would that make a difference? First
lets talk about the if statement.

if (genMat_ptr == null) // null pointer protectio n
 {return;}

If you try to reference a null pointer as in genMat_ptr.ambient_green = you will get a
null pointer error at run time. You don’t want thes e occurring, so it’s best to put a
safety check in a procedure to make sure they don’t happen. Now back to the rest of our
generic routine swapMaterial().

The difference between the two routines is really h ow we call this function. We must load
our generic pointer with the address of the materia l that we want to swap around.

First we can assign our generic pointer to point to the same thing myMat0_ptr points to.

genMat_Ptr = myMat0_ptr; // move myMat0_ptr’s valu e (1000) to genMat_ptr.

We have simply assigned the value of myMat0_ptr (10 00) to genMat_ptr, a simple move.
Let’s see how memory looks here.

Notice that genMat_ptr has been assigned the value 1000 from myMat0_ptr. When you do an
assign (=) between two pointers, that is what happe ns. myMat0_ptr points to myMat, so now
genMat_ptr does also! Now we can call our generic s wapMaterial function and let it
manipulate the contents of myMat.

swapMaterial (); // call our swap Material routine with genMat_ptr pointing to myMat

When the computer gets to a statement in our functi on that references a pointer
 (i.e. genMat_ptr.ambient_green = genMat_ptr.diffuse_green ;)
it knows these are pointers, and that it should der eference the address of the pointers
and use the values that they point to for the move.

 7

See the difference between the two techniques? I ca n now swap values around in as many
material structures as I want by loading their addr esses in genMat_ptr before calling
swapMaterial.

Actually there is an easier way to assign genMat_pt r with the location of myMat0. We
really don’t even need myMat0_ptr, because the comp uter can directly load genMat_ptr from
myMat0 like this:
genMat_ptr = myMat0; // assign genMat_ptr to point to myMat0.

This works exactly the same way, and it saves us de claring an extra pointer.

If your confused don’t worry. It will sink in event ually. Try moving on to Section 7:
Programming the Light Mixer (Lite) in C-Script. Fol low along with the explanation. Try
drawing a few pictures of what memory might look li ke with all the pointers. And if it
still doesn’t sink in, don’t worry, be happy! It wi ll come to you if you keep trying.

 8

Section 7 - Programming the Light Mixer (Lite) with C-Script

What we will be doing here is coding a small C-Scri pt that will allow us to adjust the
lighting properties of an entity dynamically throug h the .material property of the
entity, and through the entities own lighting effec ts. We will be building a ‘lite’
version of light mixer for learning purposes. It wi ll include the key ideas used in Light
Mixer, but some of the functionality has been left out for brevity. The full source to
Light Mixer is available in the lmx.wdl file in the lightmxr folder, so feel free to use
it once you get through this tutorial. It contains plenty of comments to help guide you
through the code.

The main thing to keep in mind is that the Light Mi xer program needs to be self
contained. We don’t want to have any references to anything in the ‘reactor game’ itself,
since we want our end result to be usable for ‘tuni ng’ the lighting effects of entities
in other games!

One more thing. We are going to be using a LOT of P OINTERS in our code. If you don’t
understand the concept of pointers, be sure to read :
 Section 1. The nuts and bolts of using ‘Pointers’ in Light Mix er

Getting Started

So let’s get started. Fire up SED (the Wonderful ne w editor with A6 that I hope you are
using!) or the editor of your choice and make a new wdl file right in the ‘reactor’
directory. Let’s call it mylmx.wdl.

For your reference, anything in Blue from this point on is C-script code and needs to be
put in mylmx.wdl. Anything in Green is code we’ve already put in mylmx.wdl and is there
only to help you line up where to insert new Blue code . Anything in orange is a reference
to code, but it isn’t necessarily even in Light Mix er. I’m sure you already know how to
type and don’t need the practice, so you are welcom e to simply cut and paste.

 9

Let’s start with a header. So, cut out the Blue cod e below and paste it into your editor
window.

/** *************************************
Light Mixer Control Panel Script

Design goal:

Make a control panel that will let us dynamically a djust various lighting settings of
entities in a game. It should be generically writte n, so it can be used by any 3DGS game
developer to tweak his game scenes. Of course it do es require A6 running on a system with
a 'newer' video card. It should also be as unobtrus ive on the game developer’s code as
possible.
*** ************************************/

I put the design goal at the top of our program to help keep us on track. When we are
done, you can be the judge of how we did.

Our First Pointer Declaration

Now we need to define a pointer that we can use to reference our target entity in the
game. Because our code is going to be loaded right into the ‘games’ code via an include
statement, I am going to prefix everything with lmx so we won’t have any naming
conflicts.

/** *************************************
Global Variables go here
*** *************************************/

entity* lmxTarget_ptr; // pointer to the target en tity

I like to keep all of my variables at the top. It’s an old programming habit to keep my
code semi-organized. lmxTarget_ptr is the entity pointer that we will use to “point” t o
our Target Entity, (the entity that we are trying t o ‘tweak’).

One of the new features of A6 is the entity.material functionality. This gives us a lot
of control over the way an entity interacts with li ght. The first thing we need is to
define our material structure. So add this code:

material lmxMat0 { }

I was a little surprised that this didn’t generate and error, but it turned out to be
very helpful. The A6 manual defines what properties you can set up for a material, but we
didn’t include any. For your reference here is what we COULD have put in the { }.

• emissive_blue, emissive_green, emissive_red
• ambient_blue, ambient_green, ambient_red
• diffuse_blue, diffuse_green, diffuse_red
• specular_blue, specular_green, specular_red
• power
• alpha
• albedo

 10

If we define any of these Material parameters withi n the {} , the A6 compiler requires us
to give it a value. That is well and good, but if w e give it a value, this value
overrides the ‘default’ value already set. Therefor e, as soon as we attach our material
structure to an entity, it changes to our settings. But I want to be able to play with
the existing settings, and later on decide which on es to permanently set in my games! So,
we are lucky that Material lmxMat0 { } works without errors.

Building our Control Panel

All of the work of manipulating the material proper ties is going to be handled by
vertical slider panel commands. There are tutorials out there already about panels if you
don’t understand them. The new “3DGS_Manual.chm” ma nual for A6 (another great new tool!)
has some good explanations of the each command we w ill use. Refer to the manual for
command syntax and explanations.

So again, just paste away:

/** *************************************
Panel Code for manipulating an entities lighting ef fect
*** *************************************/

bmap lmxMap = <lmxPanel.bmp>;

bmap lmxButtonRadioup = <lmxButtonRadioUp.bmp>;
bmap lmxButtonRadioDown = <lmxButtonRadioDown.bmp>;

bmap lmxButtonRightArrowUp = <lmxRightArrowUp.bmp>;
bmap lmxButtonRightArrowDown = <lmxRightArrowDown.b mp>;

bmap lmxButtonAttachUp = <lmxButtonattachUp.bmp>;
bmap lmxButtonAttachDown = <lmxButtonattachDown.bmp >;

bmap lmxSliderblue = <lmxbluesquare.bmp>;
bmap lmxSlidergreen = <lmxgreensquare.bmp>;
bmap lmxSliderred = <lmxredsquare.bmp>;
bmap lmxSliderwhite = <lmxwhitesquare.bmp>;

/** ******************************
Light Mixer Control Panel
*** ******************************/
panel lmxPanel
{
 bmap =lmxMap;
 pos_x = 0;
 pos_y = 0; // was 175
 alpha=100;
 layer=1000;

 vslider = 8,345,120,lmxSliderred,1,255,lmxMat_ptr. emissive_red;
 vslider = 28,345,120,lmxSlidergreen,1,255,lmxMat_p tr.emissive_green;
 vslider = 48,345,120,lmxSliderblue,1,255,lmxMat_pt r.emissive_blue;

 vslider = 83,345,120,lmxSliderred,1,255,lmxMat_ptr .ambient_red;
 vslider = 103,345,120,lmxSlidergreen,1,255,lmxMat_ ptr.ambient_green;
 vslider = 123,345,120,lmxSliderblue,1,255,lmxMat_p tr.ambient_blue;

 11

 vslider = 158,345,120,lmxSliderred,1,255,lmxMat_pt r.diffuse_red;
 vslider = 178,345,120,lmxSlidergreen,1,255,lmxMat_ ptr.diffuse_green;
 vslider = 198,345,120,lmxSliderblue,1,255,lmxMat_p tr.diffuse_blue;

 vslider = 233,345,120,lmxSliderred,1,255,lmxMat_pt r.specular_red;
 vslider = 253,345,120,lmxSlidergreen,1,255,lmxMat_ ptr.specular_green;
 vslider = 273,345,120,lmxSliderblue,1,255,lmxMat_p tr.specular_blue;

 vslider = 308,345,120,lmxSliderwhite,1,10,lmxMat_p tr.power;
 vslider = 328,345,120,lmxSliderwhite,0,100,lmxMat_ ptr.alpha;
 vslider = 348,345,120,lmxSliderwhite,1,100,lmxMat_ ptr.albedo;

 vslider = 383,345,120,lmxSliderred,1,255,lmxTarget _ptr.red;
 vslider = 403,345,120,lmxSlidergreen,1,255,lmxTarg et_ptr.green;
 vslider = 423,345,120,lmxSliderblue,1,255,lmxTarge t_ptr.blue;

 vslider = 458,345,120,lmxSliderwhite,0,1000,lmxTar get_ptr.lightrange;
 vslider = 478,345,120,lmxSliderwhite,0,100,lmxTarg et_ptr.alpha;
 vslider = 498,345,120,lmxSliderwhite,0,100,lmxTarg et_ptr.albedo;

 // vslider = 600,345,120,lmxSliderwhite,0,1000,lmx Light_ptr.lightrange;

button = 570,330,lmxButtonRightArrowdown,lmxButtonR ightArrowUp,lmxButtonRightArrowUp,

lmxGetNextEntity,null,null;

button = 600,445,lmxButtonAttachDown,lmxButtonAttac hUp,lmxButtonAttachUp,

lmxAttachMaterial,null,null;

digits = 7,465,3,_a4font,1,lmxMat_ptr.emissive_red;
digits = 27,465,3,_a4font,1,lmxMat_ptr.emissive_gre en;
digits = 47,465,3,_a4font,1,lmxMat_ptr.emissive_blu e;

digits = 82,465,3,_a4font,1,lmxMat_ptr.ambient_red;
digits = 102,465,3,_a4font,1,lmxMat_ptr.ambient_gre en;

 digits = 122,465,3,_a4font,1,lmxMat_ptr.ambient_bl ue;

 digits = 157,465,3,_a4font,1,lmxMat_ptr.diffuse_re d;
 digits = 177,465,3,_a4font,1,lmxMat_ptr.diffuse_gr een;
 digits = 197,465,3,_a4font,1,lmxMat_ptr.diffuse_bl ue;

 digits = 232,465,3,_a4font,1,lmxMat_ptr.specular_r ed;
 digits = 252,465,3,_a4font,1,lmxMat_ptr.specular_g reen;
 digits = 272,465,3,_a4font,1,lmxMat_ptr.specular_b lue;

 digits = 307,465,3,_a4font,1,lmxMat_ptr.power;
 digits = 327,465,3,_a4font,1,lmxMat_ptr.alpha;
 digits = 347,465,3,_a4font,1,lmxMat_ptr.albedo;

 digits = 382,465,3,_a4font,1,lmxTarget_ptr.red;
 digits = 402,465,3,_a4font,1,lmxTarget_ptr.green;
 digits = 422,465,3,_a4font,1,lmxTarget_ptr.blue;

 digits = 447,465,4,_a4font,1,lmxTarget_ptr.lightRa nge;
 digits = 477,465,3,_a4font,1,lmxTarget_ptr.alpha;
 digits = 497,465,3,_a4font,1,lmxTarget_ptr.albedo;

 digits = 600,440,2,_a4font,1,lmxMatCount;

 12

 flags overlay,refresh;
}

For brevity, I didn’t include all of the functional ity of the Light Mixer Control Panel
in this tutorial.

Here is what the final product looks like (see lmx. wdl)

If you look across the top you’ll see the various c olor properties that we can alter with
the material structure. And below each is three col or coded slider knobs. With these
knobs we will slide up and down the various values in the structure and OBSERVE WHAT
HAPPENS. And the best part is, we can do this for a ny entity in the game! We’ll not
actually every entity, only entities that have acti on defined can be manipulated, but
more on that later.

Our panel could directly reference any of the field s in our lmxMat0 material structure,
like this:

lmxMat0.ambient_red = 200; // set ambient_red prope rty of our material (lmxMat0) to 200.

But I’ve chosen to do it a different way. We are go ing to reference all of the fields in
our Panel with a ... Pointer! Pointers are great wh en you are writing generic routines,
and I’ve got a feeling that we might want our panel to be able to ‘generically’ deal with
multiple material structures. So, go back up to the top wher e we keep our global
variables, and add the following (remember, only ad d the BLUE code and use the Green code
to help line up where to put it):

/** *************************************
Global Variables go here
*** *************************************/
entity* lmxTarget_ptr; // this is our pointer to the target entity

material lmxMat0 // our material structure
{ }

material* lmxMat_ptr = lmxMat0; // This pointer is referenced in the panel code

We have added another pointer, this one we will use in our ‘Panel code’ to reference each
of the Materials properties.

 13

So instead of directly referencing the lmxMat0 stru cture in our panel, we will indirectly
reference the properties of our material with point ers. Like this:

// somewhere outside of our ‘Panel’ code
lmxMat_ptr = lmxMat0; // set our Panel pointer to p oint to our material
.
.
.
// then in our panel
lmxMat_ptr.ambient_red = 200; // effectively sets l mxMat0.ambient_red to 200

So why go to all this trouble? Mainly so later on w e will be able to define another
material, say lmxMat1, and use it with our panel wi thout changing the panel code at all!
It would look something like this:

Material lmxMat1 {} // Define another material

lmxMat_ptr = lmxMat1; // load up our pointer with t he address of lmxMat1
.
.
.
// then in our panel
lmxMat_ptr.ambient_red = 200; // Now we are setting lmxMat1.ambient_red = 200;

Get it? Does this make sense? Do you see WHY a poin ter is so useful?

- If no, take a break, go look over Section 6 again . Then come back here.

- If yes, congratulations, take a break, you deserv e it…

 14

Finding our ‘Target’ Entities
We’ve got our target entity pointer defined, but it doesn’t ‘point’ to anything. We could
have required the game developer to establish a poi nter in his code and then pass it to
us with a function but that would be too obtrusive. For our Light Mixer Control Panel, A6
has thankfully provided a better way. It’s called ent_next . So go back to the bottom of
mylmx.wdl and add this code next:

/** *************************************
This function will cycle through all of the availab le entities
It sets our target pointer to the entities pointer
It also gets the string name of the entity for us t o display
*** *************************************/

function lmxGetNextEntity ()
{

lmxTarget_ptr = ent_next (lmxTarget_ptr); // get ne xt entity pointer
if (lmxTarget_ptr != null) // null pointer protect ion

 {
str_for_entname (lmxStrNm, lmxTarget_ptr); // get the string name

 lmxStrDsply.string = lmxStrNm; // and load it in our text display
 }
 else
 {lmxStrDsply.string = " Entity Search";}
}

I’ll give you a line for line breakdown of how the lmxGetNextEntity function works in a
minute, but before I forget, we have introduced a c ouple of new variables to our game in
this routine, so we need to go back up to the top o f the global variables area and define
them. So cut and paste the Blue code:

/** *************************************
Global Variables go here
*** *************************************/

font arial_font = "Arial",1,12; // truetype font

string lmxStrNm [20]; // a string to hold the target entities name;
text lmxStrDsply // and this is a text panel to dis play the name of the target entity
{
 layer = 1000; pos_x = 534;pos_y = 315;

font = arial_font; string = " Entity Search";
alpha = 100;flags = center_x, narrow, transparent;

}

Here we have added a string to store the entities n ame in, and a text panel to display it
with. We’ve also added a font type of arial_font.

 15

How lmxGetNextEntity () Works Line by line

ent_next gives us access to an A6 internal list of every en tity in our game. And, better
yet it returns a pointer to an entity ! To use it, you pass it an entity pointer and in
return it gives back to us the next entity on the l ist. But wait, we said we don’t have
our entity pointer loaded, therefore it is NULL. We ll, if you pass ent_next a NULL
pointer, it returns to you the first entity in it’s internal list! Now for the line for
line breakdown.

function lmxGetNextEntity ()
{

lmxTarget_ptr = ent_next (lmxTarget_ptr); // get ne xt entity pointer

Since lmxTarget_ptr is null the first time we call this procedure, we will get back the
very first entry in the table and store it in lmxTarget_ptr ! Ok, so what about this:

if (lmxTarget_ptr != null) // null pointer protect ion

Why do we need null pointer protection if we know i t’s going to return us the next
entities pointer? The answer is in the manual. If y ou get to the last entry in the table,
ent_next will return a NULL pointer. So this one line of co de when repeatedly called will
cycle us through the entire list of entities until it reaches the end, and then start all
over again! Pretty nice functionality for one line of code!
 {

str_for_entname (lmxStrNm, lmxTarget_ptr); // get the string name

str_for_entname returns the Entity Name used in WED. The default n ame is the model name
you are using with a number attached, but you can c hange it to whatever you like in WED
by using the properties box. I tried using lmxStrDsply.string as the target string for
str_for_entname but it the A6 compiler wouln’t allow it, therefore I had to make another
string called lmxStrNm .

 lmxStrDsply.string = lmxStrNm; // and load it in our text display
 }

And of course the above line simply puts the string name into the display panel’s string
for us.

 16

Attaching to the entity

Now that we have our entity pointer all loaded up, along with the entity name, we need
some code to attach our material structure to it. W e’ll use the same technique as the
last time, I’ll give you the entire function all at once, then we’ll go add any new
variables and finally we’ll go through it line for line. So go to the BOTTOM of mylmx.wdl
and paste away!

/** **************************
Function to attach materials to our target
*** **************************/
function lmxAttachMaterial ()
{
 if (lmxMatCount > 1) // test to see if we are a lready attached
 {beep;return;} // and sound off if we are

if (lmxTarget_ptr == 0) // null pointer check
 {beep;return;}

 lmxTarget_ptr.material = lmxMat_ptr; // attach our Generic Material Pointer

if (lmxMatCount > 0) {lmxMatCount -= 1;} // count down
}

We seem to have added a variable in this procedure, so lets go back up to our globals
section and add it in. Paste only the Blue code:

/** *************************************
Global Variables go here
*** *************************************/
entity* lmxTarget_ptr; // this is our pointer to the target entity
font arial_font = "Arial",1,12; // truetype font
string lmxStrNm [20]; // a string to hold the target entities name;
text lmxStrDsply // and this is a text panel to dis play the name of the target entity
{
 layer = 1000; pos_x = 534;pos_y = 315;

font = arial_font; string = " Entity Search";
alpha = 100;flags = center_x, narrow, transparent;

}

var lmxMatCount = 1;

 17

How lmxAttachMaterial () works

/** **************************
Function to attach materials to our target
*** **************************/
function lmxAttachMaterial ()
{
 if (lmxMatCount > 1) // test to see if we are a lready attached
 {beep;return;} // and sound off if we are

Here we are simply testing our Material Counter to see how many Materials we have left to
attach to entities. Actually with our ‘lite’ versio n of Light Mixer we will only be able
to attach material to one entity. However if you wa nt to see how I did it for multiple
entities, you can refer to the complete versions so urce in lmx.wdl.

if (lmxTarget_ptr == null) // null pointer check

 {beep;return;}

And here we are checking to make sure we don’t have a null pointer as our target entity.
It’s always a good idea to check our pointers befor e using them.

 lmxTarget_ptr.material = lmxMat_ptr; // attach our Generic Material Pointer

And of course, this is the meat of the function. We are setting what our target entity’s
material (pointed to by lmxtarget_ptr) to our material lmxMat0 (pointed to by
lmxMat_ptr).

if (lmxMatCount > 0) {lmxMatCount -= 1;} // count down
}

And finally we decrement our count of the maximum n umber of entities that we can attach
material to.

 18

Displaying our Panel

There’s not much left to do. We need to make our pa nel visible. Here is the function to
do that. Go to the bottom of mylmx.wdl and add the following:

/** ************************
Raise and lower the Light Mixer Control Panel
*** ************************/
function lmxTogglePanel
{
 lmxPanel.visible = (lmxPanel.visible == Off); // t oggle our panels visibility
 LmxStrDsply.visible = (lmxPanel.visible != Off); / / match lmxStrDsply visibility
}

What’s this? If you know C, then you recognize its elegant style. If not, this looks kind
of weird. We are doing a == (compare for equal), but where is the IF statement ? Here is
how this works.

How lmxTogglePanel works

First let’s look at the stuff in the ().

(lmxPanel.visible == Off);

This is indeed a compare. We are comparing the valu e of lmxPanel.visible to the defined
value of off. Well in most computer languages FALSE is represented by the value zero and
TRUE is represented by any non-zero value. C-Script OFF and ON are defined in the same as
TRUE and FALSE. That is Off is zero and On is 1.

When you put something in () you are saying evaluate what’s in the () and return a
Boolean (TRUE (1) or FALSE (0). So the computer eva luates the visible property of
lmxPanel and returns 1 or 0. Lets take the two cases of wha t visible can be.

If Visible is (visible == OFF) retur ns
 0 TRUE (1)
 1 FALSE (0)

Notice the toggling effect! If 0 then 1. If 1 Then 0.

 lmxPanel.visible = (lmxPanel.visible == Off) is the same as saying

If (lmxPanel.visible == Off) {lmxPanel.visible = On ;} else {lmxPanel.visible = Off;}

Of course this next line is basically the same thin g, except rather than toggling we want
the visibility of ths lmxStrDisplay to be the same as the visibility of the lmxPanel.

LmxStrDsply.visible = (lmxPanel.visible != Off); // match lmxStrDsply visibility

Try using this C style in other ways. You’ll like i t once you get use to it. If you
really like this concept, they have contests each y ear for C programmers to see who can
do the most work in the least # of CHARACTERS. Not lines of code, but total CHARACTERS.
You would be amazed at what they come up with.

 19

Finishing Up

Well we only have one line left for mylmx.wdl. We n eed to be able to press a key and run
the lmxTogglePanel () function. I picked the letter p (for panel). So her e is the last
line of code in mylmx.wdl. Paste it at the bottom.

on_p = lmxTogglePanel;

Finally, if you are using the 3DGS editor, SED, you might want to find the “Indent All”
symbol in the middle of the toolbar and press it to fix up the indentation.

That’s it, save and close your mylmx.wdl file.

Using mylmx.wdl with Reactor
Now we need to make a small change to the room.wdl file in the reactor folder to use your
code. Find the line that says:

include <lmx.wdl>; // Light Effects Panel

and replace it with our new code:

include <mylmx.wdl>;

That’s it. Give it a try. Run the reactor game. Pre ss p to activate the panel. Right
click once to activate the mouse pointer. Click on yellow arrow in the upper right hand
corner of the panel until you see ‘reactor1’. Click on the blue attach button to attach
our material to the reactor, and then tweak away.

Remember this is the ‘lite’ version of Light Mixer, so it only allows you to attach 1
material to 1 entity on any run of the game. It als o does not allow you to toggle On and
Off the various entity flags like transparent, brig ht, metal.

If you want to see how to do those things, and more , take a look at lmx.wdl in the
lghtmixer folder. There are plenty of comments to h elp you out.

I hope you like it. Have fun with 3DGS A6 and Light Mixer.

Send comments to Giorgi3@mchsi.com

