WDL: The Noob Way

By: Kinji

Lesson 5

Well by now you should be getting comfortable with wdl. Lets review some of the things we have covered so far and give the basic layout to a few things.

REVIEW						EXAMPLE 		

ACTION					action any_action

FUNCTION				function any_function

VAR						var any_var = 1;

MY						my

ENABLE_SHOOT			my.enable_shoot = on;

INVISIBLE				my.invisible = on;

EVENT					my.event = any_function;

TRANSPARENT			my.transparent = on;

WHILE					while(1)

IF						if(my_variable == 1)

ELSE 					else

REMOVE 				remove(me);

ME						remove(me);

TILT						my.tilt += 4;

ROLL					my.roll += 4;

PAN 					my.pan +=4;

SCALE_X				my.scale_x = 2;

SCALE_Y				my.scale_y = 2;

SCALE_Z 				my.scale_z = 2;

on_0						on_0 function_name;

on_1

on_2

on_3

on_4

on_5

on_6

on_7

on_8

on_9

on_a

on_anykey

on_b

on_c

on_click

on_client

on_ctrl

on_cud

on_cul

on_cur

on_cuu

on_d

on_e

on_enter

on_esc

on_f

on_f1

on_f10

on_f11

on_f12

on_f2

on_f3

on_f4

on_f5

on_f6

on_f7

on_f8

on_f9

on_g

on_h

on_i

on_j

on_join

on_joy1

on_k

on_l

on_load

on_m

on_mouse

on_mouse_left

on_mouse_left

on_mouse_middle

on_mouse_right

on_mouse_right

on_mouse_stop

on_n

on_o

on_q

on_r

on_s

on_server

on_space

on_string

on_t

on_tab

on_u

on_v

on_w

on_x

on_y

WAIT					wait(1);

LOAD_LEVEL				load_level <levelname.wmb>;

ENABLE_IMPACT			my.enable_impact = on;

STRING					string my_str = "hello";

MSG_SHOW				msg_show(my_str, 1);

SOUND					sound any_sound = <rain.mp3>;

PLAY_SOUND				play_sound any_sound, 50;

PLAYER					my.x = player.x;

YOU						you.pan += 4;

					

FLARE					my.flare = on;

LIGHTRED				my.lightred = 255;

LIGHTGREEN				my.lightgreen = 180;

LIGHTBLUE				my.lightblue = 0;

LIGHTRANGE				my.lightrange = 300;

RANDOM					random(300);

SKILL					your.x = my.skill1;

X						my.x = 30;

Y						temp.y = 30;

Z						my.z = you.z;

__ROTATE				my.__rotate = on;

__REPEAT				my.__repeat = on;

__BOB					my.__bob = on;

_AMMOTYPE				my._ammotype = 0.0;

_WEAPONNUMBER		my._weaponnumber = 1;

_BULLETSPEED			my._bulletspeed = 200.05;

_FIRETIME				my._firetime = 8;

_FIREMODE				DAMAGE_SHOOT

						DAMAGE_IMPACT

						DAMAGE_EXPLODE

						FIRE_PARTICLE

						FIRE_DPARTICLE

						FIRE_BALL

						FIRE_ROCKET

						FIRE_LASER

						BULLET_SMOKETRAIL

						HIT_FLASH

						HIT_EXPLO

						HIT_GIB

						HIT_SMOKE

						HIT_SCATTER

						GUNFX_BRASS

						HIT_SPARKS

						HIT_HOLE

						GUNFX_ANIMATE

BMAP					bmap the_par = <myblue.pcx>;

TEMP					temp.x=my.x + (random(400));

EFFECT					effect(fun_p,3,temp,temp);

WAITT					waitt(1);

VEL_X					my.vel_x=0;

VEL_Y					my.vel_y=0;

VEL_Z					my.vel_z=1;

MOVE					my.move = on;

SIZE						my.size = 1;

LIFESPAN				my.lifespan = 2;

PLAY_LOOP				play_loop(your_wav, 50);

MORPH					morph("cbabe.mdl", me);

SCREENSHOT 			screenshot ("MyPic", 111);

Now if you are doing a combination of

		1) checking the wdl manual

		2) taking time to try these examples

				 then you are getting better at wdl.

When you are able to use everything that s in the list so far... then you can mix them and come up with some very good scripts. The key is to start with one simple basic idea for a script... then from there add to it... then add some more... keep on until you have a long, very thought out script that is custom to your needs.

Lets move on with the lesson now....

I told a guy that I would do a movement script for him so thats next. Coding movements can get very tricky and become very complex if you don't take your time and try to figure out every aspect of what your doing. Anyway, heres what we will do. I will do several different types of movement script for you. We will start with a very simple spaceship or "hoverbike" script.

We will add sound and other stuff to this movement in parts so that we can keep it simple. Following the hoverbike we will do a little more advanced script for a airplane. Following that we will do a basic char movement script. Then last you should be ready for a more advanced approach to movement, we'll do the movement script for a char that can use swords... shields... guns.... punch.... kick.... climb..... use a grapple.... and so on. Now I say that we are going to do this... it depends on how many people request it. The length of that tutorial would be great. Also it would take me a lot of time to explain it in detail, so if thats something you would be interested in, find my post in the user contribution forums and lemme know before the next tutorial is done. Also doing the script for this... you would have to commit to making the models animations for each special ability. �

From this point on follow as close to what I do as possible so no mistakes occure.

1) Make a level.. nothing in it but one character and one open room. Make the room large enough so that you have splenty of space to move around.

2) You need a model now. Something like a small cartoon spaceship will do fine. Look at RealSpawns website.. he has small spaceship looking models.

3) now find your levels WDL and open it. Goto the very bottom under this...

///

//INCLUDE <debug.wdl>;

This is where will make our movement script. SOme things to know before we begin.... do you know what pan, tilt and roll is? You say yes but really.. do you know which direction each would turn your model? Let me explain in a noob kind of way.... use your imagination here. Lets say that you have a char in the level.. you are in 3rd person mode... you can see your characters back... he is right in front of you.

* If I rotate that character +ROLL then he will begin to rotate clockwise to his right side.

* If I rotate that character -ROLL then he will begin to rotate counter clockwise to his left side.

* If I rotate that character +PAN his feet will never leave the ground but he will spin in circles counter clockwise.

* If I rotate that character -PAN his feet stay on the ground and he spins clockwise.

* If I rotate him +TILT he will be doing backflips.

* If I rotate him -TILT he will be doing front flips.

Now you understand which way the pan, tilt and roll make a entity rotate. A way to test these directions on a entity in your game is to use something like this....

action trial_rotate

{�while(1)

{

my.pan += 1;

wait(1);

}

Then do my.pan -= 1; and so on. You can see each of them in action. The -= subtracts from the entitys pan, tilt or roll therefore giving it a negative number.. the += adds thus giving it higher numbers. Now these are important in our hoverbike movement. Let make a list of what we want our bike to do first...

1) tilt a little forward when it moves forward.

2) lean to the sides as it turns.

3) be able to rise above the ground and stop at a certain height.

That should be a easy start. Remember keep your goals short and then add on when you have it done. That is sometimes hard to do because we want to finish quickly... but I assure you... doing it this way will save you a lot of time trouble shooting.

Now from now on you will need to do some things my way for a while. This will help you keep things in order... use spaces to keep your script in order. Take this example...

var a_variable = 1;

action a_action

{

 while(1)

		{

		a_variable += 1;

			if(a_variable ==10)

			{

			return;

						}

		wait(1);

						}

It does'nt matter how	 you space your lines... just try to keep them in order... for instance everything in a action or function goes one tab over.... "IF" gets 2 tabs.. and so on. Whatever looks nice to you. Now different programmers will tell you a hundred different ways to code something.. but all of us programmers share this common thought.. there is a hundred ways to do something... and to keep the way you take simple is the best way always. Even though sometimes the simple way seems to be just as hard. And at times there is no simple way of coding your new script... you just have to dig in and go. I am going to show you a uncommon way to do this hoverbike move using many variables. When we move to a harder movement we will use something else. I just want this is plain english as I am sure you do also. As a matter of fact.. when you finish this movement you'll probably say "Damn, why did'nt I just do it that way, that was to easy!" :-) Keep in mind that this is only for learning... to make great movements you must go beyond this.

Ok once more.. you have a level with nothing in it except your entity...a spaceship or something. You are coding this at the bottom of your levels wdl. Get there and lets start...

You need to state your action name and {.......

action move_me

{

Now we do want this action to loop because we need it always checking for our next move....

while(1)

{

We use "dist" to accelerate our entity in each direction....

dist.x = 0; ///while set to 0 you will not move

dist.y = 0;

dist.z = 0;

Consider that your gas peddle. For example.... if dist.x has the value of 1 then you are moving at the rate of 1 forward. If dist.x has the value of -1 then you are moving at the rate of 1 backwards. At 0 you are not moving at all.

Now we use this.....

move(my,dist,nullvector);

I am not going to confuse you... look this up in the wdl manual for further information. Even in other movements you use this just the way you see it for now. Basically in english what you have is move("my" or me to "stores the values") NOw we have a great feature to take advantage of, we don't haveto program our camera to follow us around we can just make our view follow us like this....

move_view();

and a slight break in the loop so we do not get errors.

wait(1);

}

}

Try that and see what happens!

Nothing huh? Well I expected that. I said you had gas peddles but right now nothing is pushing them. So lets take a look at the script all together and see where we can control the values of x to give us a forward and backward motion.

action move_me

{

while(1) ///constantly looping

{

dist.x = 0; ///move forward or backward

dist.y = 0; ///move left or right

dist.z = 0; ///move up or down

move(my,dist,nullvector);

move_view(); ///view follows the character

wait(1); ///prevent loop warning with this short break

}

}

Think about this.. if dist.x had the value 1 then we would be moving forward... but we don't want to constantly move at the rate of 1 so it must return to 0 when we are done. Using simple "IF"s will make a quick fix for that. You can assign a key to do something by using "key_a" through "key_z" Actually more than that but check the manual for complete lists. We are gonna use "key_f" to move forward. Also, a simple way to keep track of dist.x value is to use a variable. Lets set up a variable called "forward" to keep that value.

var forward = 0; ///stores value to be used for dist.x positive numbers

action move_me

{

while(1)

{

	if(key_f == 1) ///if "f" is pressed......

		{

		forward = 1; ///....then give forward the value of 1

		}

dist.x = forward; ///use the alue stored in "forward" to move me

dist.y = 0;

dist.z = 0;

move(my,dist,nullvector);

move_view();

wait(1);

}

}

Now I feel like we're getting somewhere. Now if you press "f" and hold it "forward" gets the value of 1 and your character moves forwards. But now we have a problem... if forward keeps the value of 1 then you are never gonna stop moving until you hit a wall. We need to put some breaks on this thing. We need "forward" to return to the value 0 when we are not pressing "f".

var forward = 0; ///stores value to be used for dist.x positive numbers

action move_me

{

while(1)

{

	if(key_f == 1) ///if "f" is pressed......

		{

		forward = 1; ///....then give forward the value of 1

		}

	if(key_f == 0) ///if "f" is not pressed......

		{

		forward = 0; ///....then make "forward" have the value of 0 again

		}

dist.x = forward; ///use the alue stored in "forward" to move me

dist.y = 0;

dist.z = 0;

move(my,dist,nullvector);

move_view();

wait(1);

}

}

Taking this one step at a time is pretty easy huh? Now lets make this thing move backwards. We use negative numbers to do this. Think of how you set up the forward motion and lets do the backwards motion. Lets make a "backward" variable to keep up with our backward values. And we will assign the backwards motion to "b". Now the tricky part is this... we want the backward variable and the forward variable to effect our dist.x... if one is at 0 and the other has a value we can just use addition to put them both there.

var forward = 0;

var backward = 0; ///stores value to be used for dist.x negative numbers

action move_me

{

while(1)

{

	if(key_f == 1)

		{

		forward = 1;

		}

	if(key_f == 0)

		{

		forward = 0;

		}

	if(key_b == 1) ///if "b" is pressed......

		{

		backward = -1; ///....then give backward the value of -1

		}

	if(key_b == 0) ///if "b" is not pressed......

		{

		backward = 0; ///....then make "backward" have the value of 0 again

		}

dist.x = forward + backward; ///uses both value..read below for explanation

dist.y = 0;

dist.z = 0;

move(my,dist,nullvector);

move_view();

wait(1);

}

}

Now notice that when either forward or backward has a value 1 or -1 that the other has 0. This way they do not effect each other. If you press "f" forward gets the value of 1 and backward is still at 0........ forward (1) + backward (0) is still 1. Same goes when backward has -1 when "b" is pressed. Backward (-1) + forward (0) is still -1. They do not conflict.

Go try that... you should be able to move forwards and backwards now. Now if only we could turn left and right! After me explaining the pan, tilt and roll... which do you think we will use to turn our player?

If you guessed pan then you guessed right. We need to assign 2 more keys on our keyboard to the pan. I am going to use "r" for right and "l" for left.

var forward = 0;

var backward = 0;

action move_me

{

while(1)

{

	if(key_f == 1)

		{

		forward = 1;

		}

	if(key_f == 0)

		{

		forward = 0;

		}

	if(key_b == 1)

		{

		backward = -1;

		}

	if(key_b == 0)

		{

		backward = 0;

		}

	if(key_l == 1) /// if "l" is pressed.....

		{

		my.pan = my.pan + 1; ///add 1 to my pan

		}

	if(key_r == 1) /// if "r" is pressed.....

		{

		my.pan = my.pan + -1; ///add -1 to my pan

		}

dist.x = forward + backward;

dist.y = 0;

dist.z = 0;

move(my,dist,nullvector);

move_view();

wait(1);

}

}

Ahhh now we are shaping up just a little better. Try that. Now we can move anywhere. This is getting better. Notice we are taking this one step at a time. Any script can be done like this and it helps more than you could imagine. What about our movement being able to move up and down? This is a spaceship type of entity so we will make it so that you can rise and lower your entity using the dist.z Same setup as the forward and backward. One thing I want you to keep in mind is that you can use any keys you want but make sure that you do not use a key that is assigned to something else. Lets use "u" for going up and "s" for going down. Also we are going to cut down the value for these two.. we want 0.5 instead of 1.

var forward = 0;

var backward = 0;

var upward = 0;

var downward = 0;

action move_me

{

while(1)

{

	if(key_f == 1)

		{

		forward = 1;

		}

	if(key_f == 0)

		{

		forward = 0;

		}

	if(key_b == 1)

		{

		backward = -1;

		}

	if(key_b == 0)

		{

		backward = 0;

		}

	if(key_l == 1)

		{

		my.pan = my.pan + 1;

		}

	if(key_r == 1)

		{

		my.pan = my.pan + -1;

		}

	if(key_u == 1) /// if "u" is pressed......

		{

		upward = 0.5; ///.....give upward 0.5 and move up

		}

	if(key_u == 0)

		{

		upward = 0;

		}

	if(key_s == 1) /// if "s" is pressed....

		{

		downward = -0.5; ///.....give downward -0.5

		}

	if(key_s == 0)

		{

		downward = 0;

		}

dist.x = forward + backward;

dist.y = 0;

dist.z = upward + downward; ////here we go.. now we go up or down

move(my,dist,nullvector);

move_view();

wait(1);

}

}

If you have got this far without errors you are doing great. Now you need to pay close attention. This is'nt gonna be harder but it is going to be a little more confusing. We want to make it so that our entity rolls to the right side while he is turning right and rolls to the left while he is turning left. We are going to use a variable for a counter and we are going to stop it at a certain value because we don't want the entity to roll all the way over if you hold to the right or left. We don't have to assign any keys... since we use "r" and "l" to turn we will just use them again. Remember a positive number will roll us right and a negative number will roll us left.

var backward = 0;

var forward = 0;

var higher = 0;

var lower = 0;

var roll_countR = 0; /// new variable to use as counter for roll right

var roll_countL = 0; /// new variable to use as counter for roll left

action move_me

{

while(1)

{

	if(key_f == 1)

{

		forward = 1;

}

	

	if(key_f == 0)

{

		forward = 0;

}

	if(key_b == 1)

{

		backward = -1;

}

	

	if(key_b == 0)

{

		backward = 0;

}

	if(key_l == 1)

{

		my.pan = my.pan + 1;

}

	if(key_r == 1)

{

		my.pan = my.pan + -1;

}

	if(key_u == 1)

{

		higher = 0.5;

}

	if(key_u == 0)

{

		higher = 0;

}

	if(key_s == 1)

{

		lower = -0.5;

}

	if(key_s == 0)

{

		lower = 0;

}

	if(key_r == 1) ///if "r" is pressed.....

{

		my.roll = roll_countR; ///...roll is whatever roll_countR value is

		roll_countR = roll_countR + 1; ///...keeps adding 1

}

	if(roll_countR >= 15) ///checks to see if it is 15....

{

		roll_countR = 15;///....stops the value at 15 max

}

	if(key_l == 1) ///if "l" is pressed.....

{

		my.roll = roll_countL; ///...roll is whatever roll_countL value is

		roll_countL = roll_countL + -1; ///...keeps adding -1

}

	if(roll_countL <= -15) ///checks to see if it is -15....

{

		roll_countL = -15;///....stops the value at -15 max

}

	if(key_l == 0) && (key_r == 0) /// if "l" and "r" is not pressed

{

		my.roll = 0; /// reset roll so you not stuck sideways

		roll_countL = 0; /// reset variable to 0

		roll_countR = 0; /// reset variable to 0

}

dist.x = forward + backward;

dist.y = 0;

dist.z = higher + lower;

move(my,dist,nullvector);

move_view();

wait(1);

}

}

Ahhh don't get confused there....

if(something) && (something)

{

do this

}

&& refers to both arguments. So our roll and variables will not reset to 0 until both the "r" or the "l" are not pressed. Now try that... everything should be smooth. Of course everything here needs touching up but this is good for a example movement.

I know that by cutting this tutorial short I am gonna mess up my outline.. but I am tired and I wanna work on my level.. so I will pick up where I left off and we will use some animations and sounds with this movement in a later tutorial. I hope you are getting some us out of this so far... you have made a simple movement out of mostly "if"s Not to worry we will work on it and get it better in lesson 6. ~~Kinji~~

